1) If $f(x)=x^{3}-3 x-1$, then the function has a local minimum value at the point
(A) $(-1,1)$
(B) $(-1,3)$
(C) $\quad(1,-3)$
(D)
(1,-1)
2) $\int \mathrm{e}^{\cot x} \csc ^{2} x \mathrm{~d} x=$ \qquad where c is constant
(A) $-e^{\cot x}$
(B) $e^{\cot x}$
(C) $-e^{\tan x}$
(D) $e^{\tan x}$
3) $\int \ln \sqrt{x} d x=\ldots \ldots+c$
where c is constant
(A) $\frac{1}{2} x \ln \frac{e}{x}$
(B$) \quad \frac{1}{2} x \frac{\log x}{\log e}$
(C) $\frac{1}{2} x \frac{\log e}{\log x}$
(D) $\frac{1}{2} x \ln \frac{x}{e}$
4) The slope of the tangent to the curve $y=\tan \theta, x=\cot \theta$ at the point ($2, \frac{1}{2}$) equals..........
(A)
4
(B)
$\frac{-1}{4}$
(C)

- 4
(D) $\frac{1}{4}$

5) If $\lim _{x \rightarrow 0} \frac{e^{2 x}+\tan a x-1}{x}=1$, then $a=$
(A) -2
(B) 1
(C) -1
(D) 2
6) If $y=f(x)$ is a function its curve passing through the origin where $\frac{d x}{d y}=\frac{1}{2 x+1}$ for all points of the curve, then $\mathrm{y}=$
(A) $\quad x^{2}+2 x$
(B) $x^{2}+x$
(C) $\frac{1}{2} x^{2}+x$
(D) $\quad x^{2}+\frac{1}{2} x$
7) The area of the region bounded by the curve $y=x^{2}-9$ and the straight line $x=4$ above x-axis equals...... units of area
(A)
$\frac{20}{3}$
(B)
$\frac{47}{3}$
(C) $\frac{5}{3}$
(D) $\frac{10}{3}$
8) $\int \frac{\cos 2 x}{(\sin x-\cos x)^{2}} d x=$ \qquad +c where c is constant
(A)
$\ln |\cos x-\sin x|$
(B) $\quad-\ln |\cos x+\sin x|$
(C) $\quad-\ln |\cos x-\sin x|$
(D) $\quad \ln |\cos x+\sin x|$
9) If $x \log _{y} e=1$, then $\frac{d y}{d x}=\ldots \ldots \ldots$ at $x=1$
(A) e
(B) $\quad 1$
(C) $\frac{1}{e}$
(D) -e
10) The equation of the tangent to the curve $y=e^{x}$ at the point ($1, \mathrm{e}$) is........
(A) $e y+x=0$
(B) $y-e x=0$
(C) $\quad e y-x=0$
(D) $y+e x=0$
11) If $0<a<b<\frac{\pi}{2}$, then $\int_{a}^{b} \tan ^{2} x d x+\int_{b}^{a} \sec ^{2} x d x=\ldots \ldots \ldots$
(A) $b-a$
(B) -1
(C) 1
(D) $a-b$
12) The volume of the solid generated by revolving the region bounded by the curve of the function $y=x^{2}$ and the straight line $\mathrm{y}=\mathrm{x}+2 \quad$ a complete revolution about x-axis equals. units of volume
(A) $\frac{81}{10} \pi$
(B) $\frac{72}{5} \pi$
(C) $\frac{92}{15} \pi$
(D) $\frac{7}{6} \pi$

13) If $y=x \ln x-3 x$, then the minimum value of $x+y$ is
(A) $-e$
(B) $\quad-2 e$
(C) $\quad-e^{2}$
(D) -2
14) If $x y-8 \log \mathrm{e}=0$, then $\frac{d^{2} y}{d x^{2}}=\ldots \ldots$
(A) $\frac{-x}{y^{2}}$
(B) $\frac{2 x}{y^{2}}$
(C) $\frac{-y}{x^{2}}$
(D) $\frac{2 y}{x^{2}}$
15) If $f^{\prime}(x)$ is represented by the given figure, then $f(x)$ is represented by the figure
(A)

(B)

(C)
(D)

16) The curve of the function $y=x e^{x+k}$ has a point of inflection at $x=\ldots$. where k is constant
(A) k
(B) 2
(C) -2
(D) -k
17) If $x=x^{\sec y}-2$, then $\frac{8}{\sqrt{3}} \frac{d y}{d x}=\ldots \ldots \ldots$.at the point $\left(2, \frac{\pi}{3}\right)$
(A) $\quad-\log _{2} e$
(B) $\quad \log _{2} e$
(C) - In2
(D) In2
18) If the rate of change of the lateral area of a cube at a given moment numerically equals the rate of change of its edge length , then the length of the edge of this cube equals......length units at this moment.
(A) $\frac{1}{16}$
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
19) If $f(x)=a x-x^{3}$ where $x \in[0,4]$ and $f(1)$ is the absolute maximum value of the function, then find its absolute minimum value of the function where a is constant.
20) The given figure represents the curve $y^{2}=4 x$ where $y \geq 0$, and the two straight lines
$x=2 y, x+y=3$
Find the area of the shaded region.

