

Math. Third Sec. **Final revision Dynamic 2022**

Concept (1) The displacement *S* The displacement of a body \overrightarrow{S} is the change of its position vector $\vec{S} = \Delta \vec{x} = \vec{x} - \vec{x}_0$

Concept (2)The instantaneous velocity

Concept (2) The instantaneous velocity
\n
$$
\vec{V} = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{x}(t + \Delta t) - \vec{x}(t)}{\Delta t} = \frac{d\vec{x}}{dt} = \frac{d\vec{S}}{dt}
$$

Concept (3) The instantaneous acceleration

Concept (3) The instantaneous acceleration
\n
$$
\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{V}(t + \Delta t) - \vec{V}(t)}{\Delta t} = \frac{dV}{dt} = \frac{d^2\vec{x}}{dt^2}
$$

Concept (4) If
$$
V = f(x)
$$
, $x = g(t)$ then
\n
$$
\frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt}
$$
\n
$$
\therefore a = V \cdot \frac{dv}{dx}
$$

Example

- **A particle moves in a straight line such that its velocity (V)**
- is given by the relation $V^2 + x^2 = 25$, where x is the position of the **particle , a is the acceleration then …………** is given by the relation $V^2 + x^2 = 25$, where x is the position of the particle, a is the acceleration then

(a) $V^2 + a^2 = 25$ (b) $a^2 + x^2 = 25$ (c) $V^2 + a^2 = 0$ (d) $a^2 + x^2 = 0$
-

$V^2 + x^2 = 25$ by derivative with respect to x $W^2 + x^2 = 25$ by derivative with respect to x
 $2x \frac{dV}{dx} + 2x = 0$ $2a + 2x = 0$ $\therefore a = -x$ dV

$$
2x \frac{d^{2}y}{dx} + 2x = 0
$$
 2a + 2x = 0 $\therefore a = -x$

In the given equation $V^2 + a^2 = 25$ *Ans .(a)*

Example The opposite figure represents the (velocity – displacement) graph for a body moves in a straight line , then the acceleration (a) when the displacement vanishes $=$ m sec² **(a) when the displacement vanishes = m| s**

(a) **when the displacement vanishes = m| s**

(a) − 8 (b) 8 (c) − 20 (d) 20 **S (m) V (m|sec) 20 O 50**

The slope
$$
\frac{-20}{50} = \frac{-2}{5}
$$
 and y - intercept = 20 units
\nThe equation of the st. line $V = \frac{-2}{5}S + 20$ $\therefore a = \frac{dV}{dt} = \frac{-2}{5} \times \frac{dS}{dt}$
\n $\therefore a = \frac{dV}{dt} = \frac{-2}{5} \times V$ when the displacement vanished $V = 20$
\n $\therefore a = \frac{-2}{5} \times 20 = -8$ *Ans.*(a)

v **0**

0

Concept (5)
$$
a = \frac{dv}{dt}
$$
 $\therefore \int a \, dt = \int dv$ $\therefore V = \int a \, dt$

\nAnd $\int dv = \int a \, dt$

$$
\text{Concept } (6) \ \ V = \frac{dx}{dt} \qquad \qquad \therefore \int V \ dt = \int dx \qquad \qquad \therefore x = \int V \ dt
$$

And
$$
\int_{x_0}^{x} dx = \int_{0}^{t} V dt
$$

Concept (7)
$$
a = V \frac{dV}{dx}
$$
 : $\int a dx = \int V dv$: $\int_{V_0}^{V} V dV = \int_{x_0}^{x} a dx$

Example A particle moves in a straight line with acceleration a m/sec² . Is given as a function in velocity V m / sec as $a = 2V \sqrt{V}$ **. If the particle started motion from the origin point with velocity 4 m/sec . Then the velocity V at the position** $x = 3$ **m** equals ………… **m** /sec $(a)9$ (*b*) 4 (*c*) 25 (*d*) 16

$$
\therefore a = 2V \sqrt{V}
$$

\n
$$
V \frac{dV}{dx} = 2V \sqrt{V}
$$

\n
$$
V^{\frac{-1}{2}}dV = 0 \quad 2dx
$$

\n
$$
x_0 = 0, V_0 = 4
$$

\n
$$
2\sqrt{V} = 2x + c
$$

\n
$$
2\sqrt{V} = 2x + c
$$

\n
$$
2\sqrt{V} = 2x + 4
$$

\n
$$
2\sqrt{V} = 2x + 4
$$

\n
$$
2\sqrt{V} = 5
$$

\n
$$
V = 25
$$

\n
$$
x_0 = 0, V_0 = 4
$$

\n
$$
2\sqrt{V} = 5
$$

\n
$$
V = 25
$$

\n
$$
y = 25
$$

Concept (8) The momentum $H = mV$ The change in moment= $\Delta H = m (V_2 - V_1)$ **When the acceleration function in time** t_2 **1** *t* $\Delta H = m \int a dt$

t

The opposite figure represents the (acceleration – time) graph for a body of mass 8 kg , starts its motion from rest . If the change of its momentum during the time interval $[0, t]$ **equals** $72\sqrt{3}$ *kg m /* sec $[0, t]$
 Then t = sec.

(*a*) 2 (*b*) 4 (*c*) 6 (*d*) 8 **Then t = ………… sec.** *a m/sec²*

The change in momentum =
$$
\Delta H = m \int_{t_1}^{t_2} a dt
$$
 = area under the

acceleration – time graph
\n
$$
72\sqrt{3} = 8 \times \frac{1}{2} \times t^2 \sin 60^\circ
$$
\n
$$
\therefore 2\sqrt{3}t^2 = 72\sqrt{3}
$$
\n
$$
\therefore t^2 = 36
$$
\n
$$
\therefore t = 6 \sec
$$
\n
$$
Ans.(c)
$$

Concept (9) Newton's first lawUniform motion of a body . **(1) uniform motion on a horizontal plane under the action of a horizontal force . R** the resistance of the plane . $R = F$ $\mathbf{Also} \qquad \qquad \mathbf{N} = \mathbf{w}$ **R**

(2) Uniform motion of a body on a horizontal plane under the action of an inclined force . $F \cos \theta = R$ **R**

 $N + F \sin \theta = W$

- **(3) Vertical uniform motion**
	- $R = w$ R the resistance

W

Example

<u>Alan engine of mass 30 ton and force 51 ton.wt. pulls a number of</u> train cars each of mass 10 ton , ascends a slope inclined at an angle 30⁰ to the horizontal , with a uniform velocity . If the resistance of the motion of the engine and the cars is 10 kg.wt .per each ton of the mass . Then the number of the cars = ……………… car ()8 ()5 ()9 ()7 *a b c d*

- **The motion is uniform** $F = W \sin q + R$
- **Let the number of cars is** *x* Let the number of cars is x
 $W = (30+10x)'$ 1000, $R = (30+10x)'$ 10
(20 | 10 | 1000' 1000' $\frac{1}{2}$ | (20 | 10 | 10 | 10 | 51' 10 $W = (30 + 10 x)'$ 1000, $R = (30 + 10 x)'$ 10
 $(30 + 10 x)'$ 1000' $\frac{1}{2} + (30 + 10 x)'$ 10 = 51' 1000 $W = (30 + 10 x)'$ 1000, $R = (30 + 10 x)'$ 10
 $(30 + 10 x)'$ 1000' $\frac{1}{2} + (30 + 10 x)'$ 10 = 51' 1000

500' (30 + 10 x) + 10' (30 + 10 x) = 51000 W sin θ

510' (30 + 10 x) = 51000 **(30** $(30 + 10x) + 10'$ $(30 + 10x) = 51000$ **w** $\sin \theta \leq 0$
 (30 + 10x) = 100
 (30 + 10x) = *F R*
	-

Concept (10) Newton's second law **(b) Concept** (10) **Newton's second law**
 $\frac{d}{dt}(\vec{H}) = \vec{F}$ $\therefore \frac{d}{dt}(m\vec{V}) = \vec{F}$ $\frac{d}{dt}(\vec{H}) = \vec{F}$: $\frac{d}{dt}$ $\vec{F} = \vec{F}$ $\qquad \qquad \therefore \frac{d}{dt}(m\vec{V}) = \vec{F}$

There are two cases

There are two cases

(i) When m is constant $\therefore \frac{d}{dt}(m\vec{V}) = m\frac{d}{dt}(\vec{V}) = m\vec{a}$ $\therefore \vec{F} = m\vec{a}$ $\frac{d}{dt}(m\vec{V}) = m\frac{d}{dt}$ $\therefore \frac{d}{dt}(m\vec{V}) = m\frac{d}{dt}(\vec{V}) = m\vec{a}$ $\therefore \vec{F} = m\vec{a}$ (ii) When m is not constant $\therefore \frac{d}{dt}(m\vec{V}) = m\frac{d\vec{V}}{dt} + \vec{V}\frac{dm}{dt}$ $\frac{d}{dt}(m\overline{V}) = m\frac{dV}{dt} + \overline{V}\frac{dm}{dt}$ $\therefore \frac{d}{dt}(m\vec{V}) = m\frac{d\vec{V}}{dt} + \vec{V} \frac{d}{dt}$

Remarks

(1)When the force is a function of time , and the mass is constant then $a = \frac{dV}{dt}$ *dt*

$$
\therefore F = ma \qquad \therefore F = m \frac{dV}{dt} \qquad \therefore \int_{t_1}^{t_2} F dt = m \int_{V_1}^{V_2} dV
$$

(2) If the force is a function in displacement (s), and the mass is constant then $a = V \frac{dV}{dS}$

$$
\therefore F = ma \qquad \therefore F = m V \frac{dV}{dS} \qquad \therefore \int_{S_1}^{S_2} F dS = m \int_{V_1}^{V_2} V dV
$$

Example A force $F = 3t + 1$ measured in Newton acts upon a boy at rest **of mass 4 kg , starting its motion at the origin point (O) on a straight line then the magnitude of the velocity V when** $t = 2$ **sec.is ...**
(*a*) 4 (*b*) 2 (*c*) 3 (*d*) 5

$$
\therefore F = ma \qquad \qquad \backslash \quad F = m \frac{dV}{dt} \qquad \qquad \backslash \quad m \overset{v}{\underset{0}{\bigcirc}} dV = \overset{2}{\underset{0}{\bigcirc}} F dt
$$
\n
$$
\downarrow \overset{v}{\underset{0}{\bigcirc}} dV = \overset{2}{\underset{0}{\bigcirc}} F dt \qquad \qquad \backslash \quad 4V = \overset{2}{\underset{0}{\bigcirc}} (3t + 1)dt
$$
\n
$$
\downarrow \quad 4V = 8 \qquad \qquad \backslash \quad V = 2 \qquad \qquad Ans.(b)
$$

Example

A body of mass m kg is moving vertically downwards with an acceleration 1 m|sec² , under the action of a force acting vertically upward of magnitude 10 kg.wt , and against resistance of magnitude 10 Newton . Then m = …… kg 10 Newton . Then m = kg

(a) $\frac{135}{11}$ (b) $\frac{220}{27}$ (c) $\frac{245}{22}$ (d) 10

 \blacklozenge **F**

 $mg - F - R = ma$
 $9.8m - 10 \times 9.8 - 10 = m$ 9.8m - 10×9.8-10 = m

8.8m = 108 $\therefore m = \frac{135}{11} kg$ Ans.(a) *m* $-10 \times 9.8 - 10 = m$
 m $= 108$ $\therefore m = \frac{135}{11} kg$ Ans.(*a*

$$
\therefore m = \frac{135}{11} kg \qquad Ans.(a)
$$

Example

A body of mass $m = (2t + 1)$ moves a long a straight line parallel **to the unit vector** \hat{C} and its displacement vector is $\hat{S} = (\frac{1}{2}t^2 + t)\hat{C}$. $(\frac{1}{2}t^2+t)$ **2 to the unit vector** \hat{C} and its displacement vector is $\hat{S} = (\frac{1}{2}t^2 + t)\hat{C}$.

Then the magnitude of the force acting at t =2 sec. is …….. Units

(a) 5 (b) 20 (c) 11 (d) 10

The mass is variable then $\vec{F} = \frac{dH}{dt} = (4t + 3)\hat{c}$ **dt** $=\frac{dH}{dt} = (4t + 3)\hat{c}$ $at t = 2 sec \t F = 11c$ **Ans.(c)**

Concept (11) Impulse : - $\overline{I} = \overline{F} t$ $I = F t$ $I = m(V'-V) = F t$ $\int_{0}^{2} F dt = m(V_2 - V_1)$ **1** *t t* $I = \int Fdt = m (V_2 - V_1)$

Example

A particle moves in a straight line , its momentum changed by the rate 2t kg.m|sec² where t is the time in sec. Then the magnitude of the impulse of the force acting on the particle during the tenth sec. example 1 exam

$F = \frac{d}{dt}(H)$ $\therefore \frac{dH}{dt} = 2t$ $\therefore F = 2t$ $\therefore F = \frac{d}{dt}(H)$ $\therefore \frac{dH}{dt} = 2t$ $=\frac{d}{dt}(H)$: $\frac{dH}{dt} = 2t$: $F = 2t$ **10** $2|^{10}$ $F = \frac{10}{dt} (H)$
 $I = \int_{0}^{10} F dt$
 $\therefore I = t^2 \Big|_{0}^{10} = 19$
 Ans.(a) **9**

Concept (12) Collision If two bodies are collide then

The impulse of the first body on the second = The impulse of the second on the first.

$$
m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'
$$

In the elastic collision the kinetic energy does not change before and after collision

Example

A body of mass 4 kg falls from height 19.6 m above the ground collides with another body of mass 3 kg at rest on the ground and form one body impinges on the ground a distance S cm . Then the value of S given that the resistance of the ground is 2247 kg.wt is
(*a*) $2cm$ (*b*) $20cm$ (*c*) $20m$ (*d*) $2m$

m₁ = 4 kg
 $V^2 = V_0^2 + 2gS$ $V^2 = 0 + 2^r$

m₁ = 4 kg
\n
$$
V^2 = V_0^2 + 2gS
$$
 $S = 19.6$ m
\n $V^2 = V_0^2 + 2gS$ $V^2 = 0 + 2' 9.8' 19.6$ $V = 19.6$ m/sec

 $m_1 = 4 \text{ kg}$, $V_1 = 19.6$, $m_2 = 3 \text{ kg}$, $V_2 = 0$

$$
m_1V_1 + m_2V_2 = (m_1 + m_2)V
$$

4' 19.6 + 0 = 7V
 $V = 11.2m$ | sec

- **R = 2247 kg.wt**
- $mg R = ma$

$$
7 \times 9.8 - 2247 \times 9.8 = 7
$$
 a

- $a = -3.136$ m / sec²
- $V = 0$, $V_0 = 11.2$
- \setminus **0** = $(11.2)^2$ 2' 3.136' S $V^2 = V_0^2 + 2aS$ **V** = 0, **V**₀ = 11.2
 V ² = $V_0^2 + 2aS$
 $\angle S = 0.02m = 2cm$
 Ans (a)

Concept (13) The work $W = \overline{F} \cdot \overline{S}$ $W = \overrightarrow{F} \cdot \overrightarrow{S} = ||\overrightarrow{F}|| \times ||\overrightarrow{S}|| \cos \theta$

The work done by a variable force

Let the position of the particle at x Find the equation of \overrightarrow{AB}

The slope = $\frac{-8}{5}$ **5** − and y – **intercept** = 8 **The equation 8 8 5** $F = -\frac{6}{7}x + 8$ **8** $(x - 5)$ **5** $F = \frac{-8}{5}(x - 5)$ \mathbf{x} (m) **F(N) (N)** $\overline{\mathbf{-3}}$ **8 O** *x* **F** 8 **A B C**

Concept (14) The kinetic Energy

The kinetic energy of a body denoted by T is defined as the product of half the mass of the particle times the square of the magnitude of its velocity. $1 \frac{1}{2}$ **2** $T = \frac{1}{2} mV$

Concept (15) Principle of work and energy .

The change in kinetic energy of a particle when it is moving from an initial position to a final position is equal to the work done by the force acting on it during the displacement between these two positions $\mathbf{T} - \mathbf{T_0} = \mathbf{W}$.

$$
\Gamma - \mathbf{T_0} = \mathbf{W} .
$$

Concept (16) Potential Energy

The potential energy of a partial at a certain instant denoted by P is defined as the work done by acting forces on the body if it moved it from its position at this instant to a fixed position on the straight line on which motion occurs.

Rule (1)

The change in the potential energy of a particle is equal to negative the work done by the force during the motion $P - P_0 = -W$

Rule (2)

The sum of kinetic and potential energies is constant during motion $T + P = T_0 + P_0$

Concept (17) The power **The power : - is the time rate of doing work or**

The power : - is the work done in unit time power = $\frac{dw}{dt}$

The power = $\frac{dw}{dt} = \frac{d}{dt}(FS) = F\frac{dS}{dt} = F \times V$ $\frac{dw}{dt} = \frac{a}{dt}(FS) = F\frac{dS}{dt}$ $=\frac{d}{dt}(FS) = F\frac{dS}{dt} = F \times V$ **The average power =** *Work time* **The work 2 1** *t t Power dt*

Example

A force *F* **of magnitude 7.5 kg.wt acts upon a body and moves it in a straight line , if the velocity of the body at a certain moment is 36 km|hr**, then the power resulted from the force at the
 moment cannot equal to ……….

(a) 80 kg wt m | sec (b) 735 *watt*

(d) 700 *watt*

The power =
$$
F \times V = 7.5 \times 9.8 \times 36 \times \frac{5}{18} = 735 \text{ w} \text{ at}
$$

The power $\in [0, 735]$ $\therefore 80 \times 9.8 = 784 \notin [0, 735]$
The power resulted cannot equal 80 kg.wt m/sec (a)

F

Another solution The power = $\vec{F} \square \vec{V} = F \times V \cos \theta$ **The power =** $7.5 \times 9.8 \times 36 \times \frac{5}{18} \cos$ **18** \times 9.8 \times 36 $\times \frac{5}{18}$ cos θ The power = $735 \cos \theta$ *watt* $\therefore -1 \le \cos \theta \le 1$ **The power** $= 735 \cos \theta$ watt

∈ [0, 735] \therefore 80×9.8=784 ∉ [0, 735] **The power resulted cannot equal 80 kg.wt m|sec (a)** ʹθ

Example

A particle moves in a straight line where its velocity (V) is given as a function in position (x) by the relation $V^2 = \ln x : x > 1$ **, if

(a) is the acceleration of the motion, then

(a)** $2ax = 1$ **(b)** $ax^2 = 1$ **(c)** $ax = 2$ **(d)** $ax^2 = 2$ **(a) is the acceleration of the motion , then ………**

1

$$
V^{2} = \ln x
$$

\n
$$
2V \times \frac{dV}{dt} = \frac{1}{x} \times \frac{dx}{dt}
$$

\n
$$
2V \times a = \frac{1}{x} \times V
$$

\n
$$
\therefore 2a x = 1
$$

\n
$$
Ans.(a)
$$

Example

A , B are two smooth balls and the mass of each is m kg , the ball A is moving in a straight line on a smooth horizontal plane with velocity 8 m/ sec. If

the ball A collided with the rested ball B with an elastic collision, then the velocity of the ball A after collision directly = ….. (a) Zero

(b) 8 m/sec in the opposite direction (c) 4 m/ sec in the opposite direction (d)4 m /sec in the same direction

The collision is elastic then there is no shortage in the kinetic energy

m $V_1 + m V_2 = m V_1' + m V_2'$ $m \times 8 +$ zero = $mV'_{1} + mV'_{2}$ $\therefore V'_{1} + V'_{2} = 8$ (1) $\therefore V'_{1} + V_{2}' = 8$ $2 + \frac{1}{2} mV^2 = \frac{1}{2} m(V)^2 + \frac{1}{2} m(V^2)^2$ $m \times 8 +$ zero = $mV'_1 + mV'_2$ $\therefore V_1$
 $\frac{1}{2}mV_1^2 + \frac{1}{2}mV_2^2 = \frac{1}{2}m(V_1)^2 + \frac{1}{2}m(V'_2)$ $\frac{1}{2} m V_1^2 + \frac{1}{2} m V_2^2 = \frac{1}{2} m (V_1)^2 + \frac{1}{2}$ $x \delta + zero = mV_1 + mV_2$ $\therefore V_1 + V_2 = \delta$
 $mV_1^2 + \frac{1}{2}mV_2^2 = \frac{1}{2}m(V_1^2) + \frac{1}{2}m(V_2^2)$
 $k + zero = (V_1^2) + (V_2^2)$ $\therefore (V_1^2) + (V_2^2)$ $\frac{1}{2} m V_1^2 + \frac{1}{2} m V_2^2 = \frac{1}{2} m (V_1')^2 + \frac{1}{2} m (V_2')^2$

64 + zero = $(V_1')^2 + (V_2')^2$ $\therefore (V_1')^2 + (V_2')^2 = 64$ (2)

Solve (1), (2) (1), (2)
 $x^2 + (8-V_1)^2 = 64$
 $\therefore (V_1)^2 + 64 - 16V_1' + (V_1)^2$ **e** (1), (2)
 $1^2 + (8-V_1)^2 = 64$
 $\therefore (V_1)^2 + 64 - 16V_1' + (V_1)^2$ $64 + zero = (V_1)^2 + (V_2')^2$

∴ $(V_1)^2 + (V_2')^2 = 64$ (2)

∴ $(V_1)^2 + (8 - V_1')^2 = 64$

∴ $(V_1')^2 + 64 - 16V_1' + (V_1')^2 = 64$ **2** $\binom{1}{1}^2 - 16V_1' = 0$: $V_1'(V_1)$ \therefore **(V**₁²)² + (8−V₁²)² = 64

∴ 2(V₁²)² − 16V₁′ = 0

∴ 2(V₁²)² − 16V₁′ = 0

∴ V₁′(V₁′ − 8) = 0 $N_1' = 8$ ref :. $(V_1)^2 + (8 - V_1)^2 = 64$

:. $2(V_1)^2 - 16V_1' = 0$

:. $V_1' = 8 \text{ ref}$

:

األستاذ / سامي فاضل كبير معلمي الرياضيات

مع تمنياتنا بالتوفيق اإلدارة العامة للتعليم اإللكتروني