

Pure Mathematics

Second Form Secondary
Student Book Second term
Science Section

Authors

Mr. Kamal Younis Kabsha

Prof.Dr. Afaf Abo Elfotouh

Mr. Serafiem Elias Iskander

Mr. Magdy Abdelfatah Essafty

Mr. Osama Gaber Abdelhafez

2025 - 2026

Revision, Preparing And Modifications

Mrs. Manal Azkool

Dr. Mohamed Mohy Ebrahim Abd Elsalam

Ms. Ahmed Ibrahem Aldessoky

Mr. Sherif Atif EL Borhamy

Mr. Amgad Samer Nazeem

Pedagogical Supervision

Dr. Akram Hassan

First edition 2015/2016
Deposit number 10557 / 2015
I.S.B.N 978 - 977 - 706 - 014 - 1

Introduction

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

We are pleased to introduce this book to show the philosophy on which the academic content has been prepared. This philosophy aims at:

- 1 Developing and integrating the knowledgeable unit in Math, combining the concepts and relating all the school mathematical curricula to each other.
- 2 Providing learners with the data, concepts, and plans to solve problems.
- 3 Consolidate the national criteria and the educational levels in Egypt through:
 - A) Determining what the learner should learn and why.
 - B) Determining the learning outcomes accurately. Outcomes have seriously focused on the following: learning Math remains an endless objective that the learners do their best to learn it all their lifetime. Learners should like to learn Math. Learners are to be able to work individually or in teamwork. Learners should be active, patient, assiduous and innovative. Learners should finally be able to communicate mathematically.
- 4 Suggesting new methodologies for teaching through (teacher guide).
- 5 Suggesting various activities that suit the content to help the learner choose the most proper activities for him/her.
- 6 Considering Math and the human contributions internationally and nationally and identifying the contributions of the achievements of Arab, Muslim and foreign scientists.

In the light of what previously mentioned, the following details have been considered:

- ★ This book contains three domains: algebra, relations and functions, calculus and trigonometry. The book has been divided into related and integrated units. Each unit has an introduction illustrating the learning outcomes, the unit planning guide, and the related key terms. In addition, the unit is divided into lessons where each lesson shows the objective of learning it through the title You will learn. Each lesson starts with the main idea of the lesson content. It is taken into consideration to introduce the content gradually from easy to hard. The lesson includes some activities, which relate Math to other school subjects and the practical life. These activities suit the students' different abilities, consider the individual differences throughout Discover the error to correct some common mistakes of the students, confirm the principle of working together and integrate with the topic. Furthermore, this book contains some issues related to the surrounding environment and how to deal with.
- ★ Each lesson contains examples starting gradually from easy to hard and containing various levels of thoughts accompanied with some exercises titled Try to solve. Each lesson ends in Exercises that contain various problems related to the concepts and skills that the students learned through the lesson.
- ★ Each unit ends in Unit summary containing the concepts and the instructions mentioned and General exams containing various problems related to the concepts and skills, which the student learned through the unit.
- ★ Each unit ends in an Accumulative test to measure some necessary skills to be gained to fulfill the learning outcome of the unit.
- ★ The book ends in General exams including some concepts and skills, which the student learned throughout the term.

Last but not least. We wish we had done our best to accomplish this work for the benefits of our dear youngsters and our dearest Egypt.

Contents

Unit One

Sequences and series

1 - 1 Sequences	8
1 - 2 Series and Summation Notation	13
1 - 3 Arithmetic Sequence.	17
1 - 4 Arithmetic Series.	23
1 - 5 Geometric Sequences.	30
1 - 6 Geometric Series.	37
General exercises.	45

Unit Two

Permutations, Combinations

2 - 1 Counting Principle	49
2 - 2 Factorial of a Number - Permutations.	52
2 - 3 Combinations	57
General exercises.	63

Contents

Unit Three

Calculus

3-1 Rate of Change	67
3-2 Differentiation.	74
3-3 Rules of Differentiation.	80
3-4 Derivatives of Trigonometric Functions	86
3-5 Applications on Derivatives.	93
3-6 Integration.	99
General exercises.	104

Unit Four

Trigonometry

4-1 Angles of elevation and depression & applications on solving the triangle	113
4-2 Trigonometric functions of sum and difference of the measures of two angles	121
4-3 The Trigonometric Functions of the Double-Angle	128
General exercises.	135

Unit One

Sequences and series

Unit introduction

Fibonacci (1170 - 1250)

Fibonacci was born in pisa in Italy. He originally delivered his education in Maghreb Countries. He had brought the Arab numbers and algebraic exponents used up today. Furthermore, he had introduced and identified the accounting systems to Europeans. These systems had greatly exceeded the Roman systems which had been widely spreaded on that time in Europe. He had been best known for a problem that leads us to the following number sequence which has been named after him up to date. This sequence is : (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.....)

It is noticed that each number starting with the third number is the sum of the two numbers preceding directly to it. The rule of this sequence is identified as follows:

$$T_{n+2} = T_n + T_{n+1}, \text{ for each } n \in \mathbb{Z}^+$$

Fibonacci's numbers had been used for analyzing the financial markets and the computer algorithms such as Fibonacci technology for searching and structuring the overstock of Fibonacci's data. It clearly appears in the biological orders such as branching of trees, ordering of leaves on the stem and the order of the pine cone.

Unit objectives

By the end of this unit and doing all the activities included, the student should be able to :

- Identify the concept of the sequence.
- Distinguish between the sequence and the series.
- Identify the arithmetic sequence.
- Deduce the general term of an arithmetic sequence in different forms .
- Find the arithmetic mean of an arithmetic sequence.
- Identify the finite and infinite series.
- Find the sum of a finite number of the terms of an arithmetic sequence in different forms.
- Identify the geometric sequence.
- Deduce the general term of the geometric sequence.
- Find the geometric mean of a geometric sequence.

- Deduce the relation between the arithmetic mean and the geometric mean of two different positive numbers .
- Find the sum of a finite number of the terms of a geometric sequence in different forms.
- Find the sum of an infinite number of the terms of a geometric sequence.
- Find the sum of an infinite geometric series.
- Convert the recurring decimal into a common fraction.
- Function the arithmetic and geometric sequences to interpret some life problems such as overpopulation.
- Solve life applications on series.
- Use the calculators to solve math and life problems using the sequences and series.

Key terms

Function	Summation Notation	Geometric Means
Term	Arithmetic Sequence	Geometric Series
Finite Sequence	Common Difference	Infinite Geometric Series
Infinite Sequence	Arithmetic Means	Infinity
Increasing Sequence	Arithmetic Series	
Decreasing Sequence	Geometric Sequence	
Series	Common Ratio	

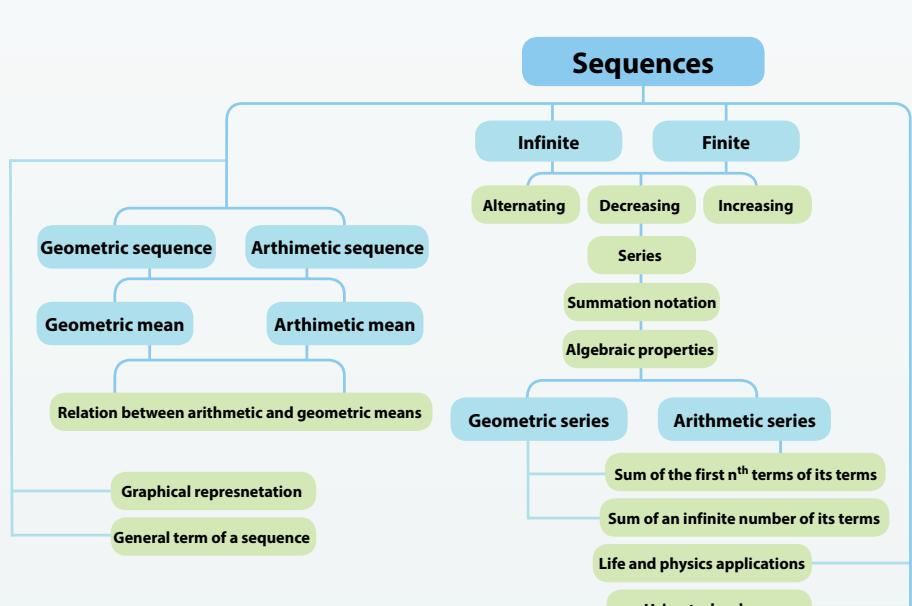
Lessons of the unit

Lesson (1 - 1): Sequences.
Lesson (1 - 2): Series and summation notation.
Lesson (1 - 3): Arithmetic sequences.
Lesson (1 - 4): Arithmetic series.
Lesson (1 - 5): Geometric sequences.
Lesson (1 - 6): Geometric series.

Materials

Scientific calculator - Graphics.

Unit planning guide



You will learn

- Definition of sequence.
- Finite and infinite sequence.
- n^{th} term of a sequence.
- Increasing and decreasing sequence.

Key - terms

- Sequence
- Finite Sequence
- Infinite Sequence
- Term
- Increasing Sequence
- Decreasing Sequence
- Constant Sequence

Materials

- Scientific Calculator
- Graphic programs

Introduction:

You have previously learned the patterns such as (1, 3, 5, 7, ...) and learned that the pattern is an order of a set of real numbers. In this unit, we are going to shed light on some of these patterns and learn them more deeply.

Think and discuss

Learn the following pattern, then answer the questions: (1, 4, 7, 10, ...)

- What is the relation between each term and the term next to it?
- Can you find the next two terms of the pattern?
- Can you find the ninth term of this pattern .
(don't try to find the previous terms)?

Learn**Definition****1**

The sequence is a function whose domain is the set of the positive integers \mathbb{Z}^+ or a subset of it and its range is a set of the real numbers \mathbb{R} where the first term is denoted by T_1 , the second term is denoted by T_2 , and the third term is denoted by T_3 and so on.... and the n^{th} term is denoted by T_n the sequence can be expressed by writing down its terms between two brackets as follows:
 $(T_1, T_2, T_3, \dots, T_n)$
or denoted by the symbol (T_n) .

Remember

The function is a relation between the two sets X and Y so that each element of X appears as a first projection only one time in a limited ordered pairs of the relation.

Notice

- Terms of a sequence are the elements of the sequence domain.
- The symbol (T_n) expresses the sequence while the symbol T_n expresses its n^{th} term.
- The sequence is subjected to the order of its elements while the set is not subjected to the order of its elements.
- The elements of the set don not recur while the elements of the sequence may recur.

Definition:**Finite and Infinite Sequences**

The sequence is finite if the number of its terms is finite (i.e. can be counted) The sequence is infinite if the number of its terms is infinite (an infinite number of elements)

Example

1 Write down each of the sequences whose n^{th} term is given by the relation:

a $T_n = n^2 - 1$ (to five terms starting with first term)

b $T_n = \frac{(-1)^n}{2n+1}$ (to an infinite number of terms starting with first term)

Solution

a let $n = 1$ then $T_1 = (1)^2 - 1 = 0$, let $n = 2$ then $T_2 = (2)^2 - 1 = 3$,

let $n = 3$ then $T_3 = (3)^2 - 1 = 8$, let $n = 4$ then $T_4 = (4)^2 - 1 = 15$,

let $n = 5$ then $T_5 = (5)^2 - 1 = 24$

the sequence is: (0, 3, 8, 15, 24)

b let $n = 1$ then $T_1 = \frac{(-1)^1}{2 \times 1 + 1} = \frac{-1}{3}$, let $n = 2$ then $T_2 = \frac{(-1)^2}{2 \times 2 + 1} = \frac{1}{5}$,

let $n = 3$ then $T_3 = \frac{(-1)^3}{2 \times 3 + 1} = \frac{-1}{7}$, let $n = 4$ then $T_4 = \frac{(-1)^4}{2 \times 4 + 1} = \frac{1}{9}$,

let $n = 5$ then $T_5 = \frac{(-1)^5}{2 \times 5 + 1} = \frac{-1}{11}$

The sequence is: $(\frac{1}{3}, \frac{1}{5}, \frac{-1}{7}, \frac{1}{9}, \frac{-1}{11}, \dots)$ the sequence in this case is called an alternating sequence (i.e. a term of its terms is positive and the other is negative or vice versa).

General Term of a Sequence

The general term of a sequence (it is sometimes called n^{th} term) is written as T_n where T_n is the image of the element whose order is n and can be found sometimes through the given terms of the sequence by realizing the relation between the value and order of the term.

For example:

➤ The general term of the sequence of even numbers: $(2, 4, 6, 8, \dots)$ is $T_n = 2n$

➤ The general term of the sequence of odd numbers: $(1, 3, 5, 7, \dots)$ is $T_n = 2n - 1$

➤ The general term of the sequence: $(\frac{1}{3}, \frac{1}{4}, \frac{-1}{5}, \frac{1}{6}, \dots)$ is $T_n = \frac{(-1)^n}{n+2}$

Example

2 Write down the first five terms and the general term of the sequence (T_n) which is defined as follows:

$T_1 = 2$ and $T_{n+1} = 2T_n$ where $n \geq 1$

 Solution

by substituting the value of $n = 1, 2, 3, 4, 5$ in the relation $T_{n+1} = 2 T_n$

let $n = 1 \quad T_2 = 2 T_1 \quad \text{i.e.: } T_2 = 2 \times 2 = 4 = 2^2$ (by substituting $T_1 = 2$)

let $n = 2 \quad T_3 = 2 T_2 \quad \text{i.e.: } T_3 = 2 \times 4 = 8 = 2^3$ (by substituting $T_2 = 4$)

let $n = 3 \quad T_4 = 2 T_3 \quad \text{i.e.: } T_4 = 2 \times 8 = 16 = 2^4$ (by substituting $T_3 = 8$)

let $n = 4 \quad T_5 = 2 T_4 \quad \text{i.e.: } T_5 = 2 \times 16 = 32 = 2^5$ (by substituting $T_4 = 16$)

The first five terms of the sequence are: (2, 4, 8, 16, 32)

The general term of the sequence (T_n) is: $T_n = 2^n$

 Tip

Some sequences do not have a defined rule till now such as the sequence of the prime numbers (2, 3, 5, 7,)

 Think:

1- How can you check the solution above?

 Try to solve

2 Write down the first six terms of the sequence (T_n) where: $T_{n+2} = T_{n+1} + T_n$ where $n \geq 1$, $T_1 = 2$ and $T_2 = 3$

Increasing and Decreasing Sequences**Check the following sequences:**

1) (-5, -1, 3, 7, 11, 15,)

(What do you notice?)

2) (4, 2, 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$,)

(What do you notice?)

➤ **In the first sequence:** $-1 > -5$ i.e. $T_2 > T_1$, $3 > -1$ i.e. $T_3 > T_2$ and so on for the rest of the terms. I.e. each term of the sequence is greater than the directly previous term.

➤ **In the second sequence:** $2 < 4$ i.e. $T_2 < T_1$, $1 < 2$ i.e. $T_3 < T_2$ and so on i.e. each term of the sequence is lesser than the directly previous term.

Definition:

➤ The sequence (T_n) is called **increasing** if $T_{n+1} > T_n$

➤ The sequence (T_n) is called **decreasing** if $T_{n+1} < T_n$

 Tip

Constant sequence :
The whole terms of the sequence are equal. i.e.: $T_n = a$. It may be finite or infinite.

 Example

3 Show which of the sequences (T_n) is in increasing, decreasing or otherwise.

a $T_n = 2n + 3$

b $T_n = \frac{1}{3n - 1}$

c $T_n = \frac{(-1)^n}{2n} + 4$

Solution

a) Find T_{n+1} as follows:

$$T_{n+1} = 2(n+1) + 3 = 2n + 5$$

Find the result of: $T_{n+1} - T_n$:

$$T_{n+1} - T_n = (2n+5) - (2n+3) = 2 > 0$$

$T_{n+1} > T_n$ i.e. the sequence is **increasing** for all **the values of n**

b) Find T_{n+1} as follows:

$$T_{n+1} = \frac{1}{3(n+1)-1} = \frac{1}{3n+2}$$

Find the result of: $T_{n+1} - T_n$:

$$\begin{aligned} T_{n+1} - T_n &= \frac{1}{3n+2} - \frac{1}{3n-1} = \frac{3n-1-3n-2}{(3n+2)(3n-1)} \\ &= \frac{-3}{(3n+2)(3n-1)} < 0 \end{aligned}$$

$T_{n+1} < T_n$ i.e. the sequence is **decreasing** for all **the values of n**

c) $T_{n+1} - T_n = \frac{(-1)^{n+1}}{2(n+1)} - \frac{(-1)^n}{2n} = \frac{(-1)^{n+1}}{2(n+1)} + \frac{(-1)^{n+1}}{2n}$

$$= (-1)^{n+1} \left[\frac{1}{2(n+1)} + \frac{1}{2n} \right] = (-1)^{n+1} \left[\frac{n+n+1}{2n(n+1)} \right]$$

$$= (-1)^{n+1} \left[\frac{2n+1}{2n(n+1)} \right]$$

This expression is positive when n is an odd number and negative when n is an even number i.e. the sequence is neither increasing nor decreasing.

Exercises (1 - 1)

Complete:

- 1 The sequence is a function whose domain is or
- 2 The seventh term of the sequence (T_n) where $T_n = 2n^2 + 3$ is
- 3 In the sequence (T_n) where $T_{n+1} = nT_n$, $n \geq 1$ if $T_1 = 1$ then $T_2 =$
- 4 The n^{th} of the sequence $(-1, 4, -9, 16, \dots)$ is

Complete the following using: $>$, $<$ or $=$

5 The sequence is decreasing if: $T_{n+1} \dots T_n$ for each $n \geq 1$

6 The sequence is constant if: $T_{n+1} \dots T_n$ for each $n \geq 1$

7 The sequence is increasing if: $T_{n+1} \dots T_n$ for each $n \geq 1$

Choose the correct answer:

8 The sequence whose n^{th} term is $T_n = \frac{2}{n} - 1$ where $n \in \mathbb{Z}^+$ represents:

a Increasing sequence b Decreasing sequence
 c Constant sequence d Alternating sequence

9 The general term of the sequence $(2 \times 3), (3 \times 4), (4 \times 5), (5 \times 6), \dots$ is

a $(n-1)(n+1)$ b $n(n+1)$ c $2n(n+1)$ d $(n+1)(n+2)$

Answer the following questions:

10 Show whether each of the following sequences is finite or infinite:

a $(1, 4, 7, 11, \dots)$
 b $(3, 5, 7, 9, \dots, 21)$
 c The sequence (T_n) where $T_n = n^2 - 1$, $n \in \mathbb{Z}^+$
 d The sequence (T_n) where $T_n = \frac{2}{n} + 3$, $n \in \{1, 2, 3, 4, 5\}$

11 Write the first five terms for each of the following sequences whose general term is given by the following rules:

a $T_n = n + n^2$ b $T_n = \frac{1}{2n-5}$ c $T_n = (-1)^n (n-2)^2$

12 Write down the general term for each of the following sequences:

a $(2, 5, 8, 11, \dots)$ b $(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots)$
 c $(1, 8, 27, 64, \dots)$ d $(1, \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \dots)$

13 Show whether each of the sequences (T_n) is increasing, decreasing or otherwise in each of the following:

a $T_n = 3n + 5$ b $T_n = \frac{1}{n} + 2$

You will learn

- The concept of series
- Finite series
- Infinite series
- Algebraic properties of summation.

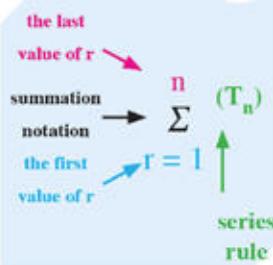
Key - terms

- Series
- Finite Series
- Infinite Series
- Summation Notation

Materials

- Scientific Calculator

Remember



Learn

Definition

Finite Series

It is written in the form: $T_1 + T_2 + T_3 + \dots + T_r + \dots + T_n$ where n is a positive integer, T_n is the terms whose order is n in the series and the numerical value of the finite series is called the sum of the terms of the corresponding sequence.

The finite series: $a_1 + a_2 + a_3 + \dots + a_r + \dots + a_n$ can be written in the form $\sum_{r=1}^n (a_r)$ and read as the sum of a_r from $r=1$ to $r=n$

Example

1 Expand each of the following series, then find the expansion sum.

a $\sum_{r=1}^4 (r^2)$

b $\sum_{r=1}^7 (2r - 1)$

c $\sum_{r=1}^n \left(\frac{1}{r+1} - \frac{1}{r}\right)$

Solution

a $\sum_{r=1}^4 (r^2) = 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$

b $\sum_{r=1}^7 (2r - 1) = (2 \times 1 - 1) + (2 \times 2 - 1) + (2 \times 3 - 1) + (2 \times 4 - 1) + (2 \times 5 - 1) + (2 \times 6 - 1) + (2 \times 7 - 1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49$

c $\sum_{r=1}^n \left(\frac{1}{r+1} - \frac{1}{r}\right) = \left(\frac{1}{2} - \frac{1}{1}\right) + \left(\frac{1}{3} - \frac{1}{2}\right) + \left(\frac{1}{4} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n}\right) = \frac{1}{2} - 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{4} - \frac{1}{3} + \dots + \frac{1}{n+1} - \frac{1}{n} = \frac{1}{n+1} - 1 = \frac{1-n-1}{n+1} = \frac{-n}{n+1}$

 Try to solve

1 Write down the series in the form of an expansion, then find its sum:

a $\sum_{r=1}^5 (1+r^2)$

b $\sum_{r=1}^9 (3r+2)$

c $\sum_{r=1}^n \left(\frac{1}{r+2} - \frac{1}{r+1} \right)$

Infinite Series

The terms of the infinite series cannot be counted. For example the series:

$-3 + 9 - 27 + 81 - 243 + \dots$ can be written in the form of $\sum_{r=1}^{\infty} (-3)^r$. The symbol ∞ is used to express infinity.

 Example

2 Use the summation notation Σ to write down the series: $2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$

 Solution

\therefore The general term of the sequence is: $T_r = (r+1)(r+2)$ where $r \in \mathbb{Z}^+$

$$\therefore 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots = \sum_{r=1}^{\infty} (r+1)(r+2)$$

Algebraic Properties of Summation

1- If (T_r) and (E_r) are two sequences, $n \in \mathbb{Z}^+$ and $C \in \mathbb{R}$, then:

a $\sum_{r=1}^n C = C n$

b $\sum_{r=1}^n cT_r = c \sum_{r=1}^n T_r$

c $\sum_{r=1}^n (T_r \pm E_r) = \sum_{r=1}^n T_r \pm \sum_{r=1}^n E_r$

2- $\sum_{r=1}^n r = \frac{n(n+1)}{2}$, $\sum_{r=1}^n r^2 = \frac{n(n+1)(2n+1)}{6}$

 Example

3 Find in two different methods $\sum_{r=1}^4 (3-2r+r^2)$

 Solution

1- Method 1 (direct substitution)

$$\begin{aligned} \sum_{r=1}^4 (3-2r+r^2) &= (3-2 \times 1 + 1^2) + (3-2 \times 2 + 2^2) + (3-2 \times 3 + 3^2) + (3-2 \times 4 + 4^2) \\ &= 2 + 3 + 6 + 11 = 22 \end{aligned}$$

2- Method 2 (using algebraic properties of summation)

$$\begin{aligned}
 \sum_{r=1}^4 (3 - 2r + r^2) &= \sum_{r=1}^4 3 - 2 \sum_{r=1}^4 r + \sum_{r=1}^4 r^2 \\
 &= 3 \times 4 - 2 \times \frac{4(4+1)}{2} + \frac{4(4+1)(2 \times 4 + 1)}{6} \\
 &= 12 - 2 \times \frac{4 \times 5}{2} + \frac{4 \times 5 \times 9}{6} \\
 &= 12 - 20 + 30 = 22
 \end{aligned}$$

Using the Scientific Calculator to Find the Sum of a Series

- Press the summation notation button Σ according to the specific color .
- Write the rule of the sequence $(3 - 2r + r^2)$ as follows:

3 - 2 ALPHA () (x) + ALPHA () (x) x^2

- Use the button (REPLAY) to move as follows:
- Upward, write 4 and downward, write 1
- Press the button = to give the sum 22 on the screen

f Try to solve

3) Find in two methods: $\sum_{r=1}^5 (2r^2 - 3r + 5)$ known that:

$$\sum_{r=1}^n r = \frac{n(n+1)}{2} \text{ and } \sum_{r=1}^n r^2 = \frac{n(n+1)(2n+1)}{6}$$

1) Complete:

- a) The series: $5 + 10 + 15 + 20 + \dots + 50$ is written using the summation notation in the form of
- b) The series: $7 \times 1 + 7 \times 2 + 7 \times 3 + \dots + 7 \times 20$ is written using the summation notation in the form of
- c) The series: $\frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} \dots$ is written using the summation notation in the form of

2) Write down the following series using the summation notation:

a) $1 + 2 + 3 + 4 + 5 + \dots + 20$	b) $2 + 4 + 6 + 8 + 10 + \dots + 60$
c) $3 + 6 + 9 + 12 + 15 + 18 + 21$	d) $2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

3) Expand each of the following series:

a) $\sum_{r=1}^5 (3r - 2)$

b) $\sum_{r=1}^{\infty} \left(\left(\frac{1}{2} \right)^r - 1 \right)$

4) If you know that $\sum_{r=1}^n r = \frac{n(n+1)}{2}$ and $\sum_{r=1}^n r^2 = \frac{n(n+1)(2n+1)}{6}$, use the properties of the summation notation Σ to find the value for each of the following:

a) $\sum_{r=8}^{12} 2(r + 5)$

b) $\sum_{r=5}^8 (2r^2 - 3r)$

5) **Mining:** A gold mine produced 4200 kg of gold in the first year and the production is decreased at a rate of 10 % yearly of the directly previous year.

➤ Use the summation notation to write the sum of production of the gold mine during the first five years, then find this sum.

You will learn

- ▶ Definition the arithmetic sequence.
- ▶ n^{th} term of the arithmetic sequence.
- ▶ Identify the arithmetic sequence
- ▶ Definition of the arithmetic mean.
- ▶ Insert a finite number of arithmetic means between two numbers.

Doaa has started to read a novel. On the first day, she read 10 pages, on second day, she read 15 pages, on the third day, she read 20 pages and she kept reading in this pattern. The sequence of the number of the pages read on each day is : (10, 15, 20, 25, ...)

What do you notice in this sequence?

Definition**Arithmetic Sequence**

The arithmetic sequence is the sequence in which the difference between a term and the directly previous term to it equals a constant and it is called the common difference of the sequence. it is denoted by the symbol (d)

i.e.: $d = T_{n+1} - T_n$ for each $n \in \mathbb{Z}^+$

1**Example**

1 Which of the following is an arithmetic sequence? why ?

- a** (7, 10, 13, 16, 19)
- b** (27, 23, 19, 15, 11,)
- c** ($\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$)

Solution

a $\because T_2 - T_1 = 10 - 7 = 3$, $T_3 - T_2 = 13 - 10 = 3$,
 $\therefore T_2 - T_1 = T_3 - T_2 = T_4 - T_3 = T_5 - T_4 = 3$
 \therefore The sequence is arithmetic and its common difference = 3

b $\because T_2 - T_1 = 23 - 27 = -4$, $T_3 - T_2 = 19 - 23 = -4$,
 $\therefore T_2 - T_1 = T_3 - T_2 = T_4 - T_3 = T_5 - T_4 = -4$
 \therefore The sequence is arithmetic and its common difference = -4

c $\because T_2 - T_1 = \frac{1}{3} - \frac{1}{2} = -\frac{1}{6}$, $T_3 - T_2 = \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}$
 $\therefore T_2 - T_1 \neq T_3 - T_2$

Tip

Harmonic Sequence
The sequence is called a harmonic sequence if the reciprocals of its terms form an arithmetic sequence such as the sequence $(\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots)$

Materials

- ▶ Scientific Calculator
- ▶ Graphic programs

 Try to solve

1 Which of the following is an arithmetic sequence ? why

a (38 , 33 , 28 , 23 , 18, ...) b (- 14 , - 8 , - 2 , 4, 10) c (23 , 28 , 33 , 38 , 42)

 Example

2 Show which of the following sequences whose n^{th} term is given by the following relations is arithmetic, then find its common difference in case it is arithmetic.

a $T_n = 2n + 3$ b $T_n = \frac{3}{n} + 2$

 Solution

a $\because T_{n+1} - T_n = (2(n+1) + 3) - (2n + 3) = 2n + 2 + 3 - 2n - 3 = 2$
 \therefore The sequence is arithmetic and its common difference is 2

b $\because T_{n+1} - T_n = \left(\frac{3}{n+1} + 2\right) - \left(\frac{3}{n} + 2\right)$
 $= \frac{3}{n+1} - \frac{3}{n} = \frac{3n - 3n - 3}{n(n+1)} = \frac{-3}{n(n+1)}$ does not equal to a constant.

\therefore The sequence is not arithmetic.

 Try to solve

2 Show which of the following sequences whose n^{th} term is given by the following relations is arithmetic, then find its common difference in case it is arithmetic.

a $T_n = 5 - 3n$ b $T_n = (n+1)^2$

From the previous, we deduce that:

- The relation between the two variables n and T_n is $T_n = d n + b$ where b and d are two constants and d is the common difference of the sequence .
- The sequence is increasing if $d > 0$, and is decreasing if $d < 0$

Using the scientific calculator to write the arithmetic sequence:

To write the arithmetic sequence in which ($a = 10$ and $d = -3$) we do as follows:

- We write the value of a (10) then press $=$ and put the value of d by pressing $-$ then (3) and press $=$ to give the second term of the sequence. By repeating the process of pressing $=$ the next terms are given and so on ...

.....

 Try to solve

3 In the sequence (T_n) where $T_n = 3n - 5$:

a Prove that (T_n) is an arithmetic sequence and find its common difference.
b Show that this sequence is increasing.
c Find the fifteenth term of the sequence. d What's the value of n if $T_n = 85$?

The n^{th} Term of the arithmetic sequence

From definition (1) the n^{th} term of the arithmetic sequence (T_n) whose first term is a and common difference is d can be deduced as follows :

$T_1 = a$, $T_2 = a + d$ and $T_3 = a + 2d$ and by keeping this pattern, we find that the n^{th} term of this sequence is :

$$T_n = a + (n-1)d \text{ and if } T_n = \ell \text{ (where } \ell \text{ is the last term, then } \ell = a + (n-1)d)$$

Example

3 In the arithmetic sequence (13 , 16 , 19 , , 100)

a Find the tenth term. b Find the number of the terms of the sequence.

Solution

\because The sequence is arithmetic

$$\therefore a = 13, d = 16 - 13 = 3$$

a $T_n = a + (n-1)d$

$$\therefore T_{10} = 13 + (10-1) \times 3$$

$$= 13 + 9 \times 3 = 13 + 27 = 40$$

b The required is to find the value of n when $\ell = 100$

$$\therefore T_n = a + (n-1)d$$

$$\therefore 100 = 13 + (n-1) \times 3$$

$$\therefore 100 = 13 + 3n - 3$$

$$\text{i.e.: } 3n = 100 - 10 = 90$$

$$\therefore n = 30$$

Try to solve

4 Find the number of the terms of the arithmetic sequence (7 , 9 , 11 , , 65) then find the value of the tenth term from the end.

Identifying the Arithmetic Sequence

The arithmetic sequence can be identified when its first and common difference are known.

Example

4 If the seventh and fifteenth terms of an arithmetic sequence are 18 and 34 respectively, find the common difference and the first term then find the n^{th} term of this sequence.

Solution

$$T_7 = 18, T_{15} = 34$$

from the given data

$$\therefore T_n = a + (n-1)d$$

$$\therefore a + 6d = 18, a + 14d = 34$$

$$\therefore 8d = 16$$

by subtracting the two equations

$$d = 2$$

By dividing by 8

$$\therefore a + 6 \times 2 = 18$$

by substituting in equation 1

$$\therefore a = 18 - 12 = 6$$

To find the n^{th} term, substitute in the rule: $T_n = a + (n - 1) d$ about the two values of a and d

$$T_n = 6 + (n - 1) \times 2 = 6 + 2n - 2 = 2n + 4$$

The first term equals 6 the common difference equals 2 and the n^{th} term is $2n + 4$

Arithmetic means

When there are two non-consecutive terms in an arithmetic sequence, then all the terms lying between those two terms are called arithmetic means. This concept can be used to find the missing terms between those two terms in the arithmetic sequence.

Definition

If a , b and c are three consecutive terms in an arithmetic sequence, then b is called the arithmetic mean between the two terms a and c where $b - a = c - b$,

i.e.: $2b = a + c$ then $b = \frac{a+c}{2}$ So: $(a, \frac{a+c}{2}, c)$ is an arithmetic sequence.

several arithmetic means: $x_1, x_2, x_3, \dots, x_n$ can be inserted between the two numbers a and b in a way that the numbers: $(a, x_1, x_2, x_3, \dots, x_n, b)$ form an arithmetic sequence.

2

Verbal expression: What is the relation between the number of the arithmetic means and the number of the terms of the sequence involving such means?

Inserting a Finite Number of Arithmetic Means Between Two Numbers

Example

5 Insert 5 arithmetic means between 6 and 48

Solution

1- Find the number of the sequence terms.

There are five means between the first and the last terms of the sequence. Thus, the number of the terms of the arithmetic sequence is $n = 2 + 5 = 7$

2- Find the value of d

The n^{th} term of the arithmetic sequence is: $T_n = a + (n - 1) d$

by substituting: $a = 6$, $T_n = 48$ and $n = 7$

$$48 = 6 + (7 - 1) d \quad \text{i.e.: } 6d = 42$$

by dividing the two sides by 6 $d = 7$

3- We use the value of d to find the required arithmetic means

$$(6) \ , \ 13 \ , \ 20 \ , \ 27 \ , \ 34 \ , \ 41 \ , \ (48)$$

$+7 \ , \ +7 \ , \ +7 \ , \ +7 \ , \ +7 \ , \ +7$

The required means are: 13, 20, 27, 34, 41

Try to solve

5 Insert seven arithmetic means between the two numbers -24 and 16

Exercises (1 - 3)

Determine which of the following sequences are arithmetic and which are non-arithmetic, then find the common difference in case the sequence is arithmetic:

1 (34, 30, 26, 22, 18) 2 (7, 12, 17, 22, 27)
 3 (-12, -18, -24, -30, -36)

Complete:

4 The seventh term of the arithmetic sequence (2, 5, 8, ...) is
 5 The eleventh term of the arithmetic sequence (T_n) where $T_n = 3n - 5$ is
 6 The n^{th} term of the arithmetic sequence (81, 77, 73, ...) is
 7 The arithmetic mean of the two numbers 8 and 12 is
 8 If the arithmetic mean of the two numbers x and 26 is 21, then x equals

Choose the correct answer:

9 All the following sequences are arithmetic except :
 a (3, 7, 11, 15, ...) b (-11, -15, -19, -23, ...)
 c $(\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots)$ d $(\frac{21}{5}, \frac{16}{5}, \frac{11}{5}, \frac{6}{5}, \dots)$

10 Of all the following sequences, the arithmetic sequence is:
 a $(T_n) = (\frac{n+1}{n})$ b $(T_n) = (n+1)^2$
 c $(T_n) = (\frac{3}{n}(n+2))$ d $(T_n) = (\frac{n^3-1}{n^2+n+1})$

11 If (T_n) is an arithmetic sequence where $T_n = 3n + 2$, then the arithmetic mean between T_5 and T_{11} equals:
 a 8 b 16 c 22 d 26

12 If $2a + 1$, $5a - 1$ and $6a + 3$ are three consecutive terms of an arithmetic sequence, then a equals.
 a 1 b 2 c 3 d 5

13 If a and b are two arithmetic means between x and y , then: $\frac{y-x}{b-a}$ equals:
 a 2 b 3 c 4 d 6

Answer the following questions:

14 Find the number of the terms of the arithmetic sequence (2, 5, 8, ..., 80).

15 In the arithmetic sequence (63 , 59 , 55 , , - 133) find :

- The value of the seventh term
- the number of the sequence terms.

16 Find the order and value of the first negative term in the arithmetic sequence (67, 64 , 61 ,)

17 Find the order and value of the first term whose value is greater than 180 in the arithmetic sequence:

18 Write down the first three terms of the sequence $(T_n) = (2 + 5n)$, then find the order of the term whose value is 72 of the sequence and find the order of the first term whose value is more than 100

19 What is the value of n in the arithmetic sequence whose first term = 3 , $T_n = 39$ and $T_{2n} = 79$? find the sequence.

20 Find the arithmetic sequence whose fifth term = 21 , and the tenth term = 3 times the second term .

21 (T_n) is an arithmetic sequence in which $T_1 + T_2 = 9$ and $T_5 = 22$, find this sequence.

22 Find the arithmetic sequence whose sixth term = 20 and the ratio between the fourth and tenth terms is 4: 7.

23 Find the arithmetic sequence whose fourth term = 11 and the sum of the fifth and ninth terms = 40, then find the order of the term whose value is 152 in this sequence .

24 Find the arithmetic sequence in which the arithmetic mean between its third and seventh terms is 19 and its tenth term is greater than twice of its fourth term by 2.

25 (T_n) is an arithmetic sequence in which: $T_2 + T_4 = 42$ and $T_3 \times T_5 = 315$, find this sequence.

26 If (8 , a , , b , 68) form an arithmetic sequence of sixteen terms, find the values of a and b.

27 If 36 , a , 24 , b are consecutive terms of an arithmetic sequence, find the value of a and b.

28 If the arithmetic mean between a and b is 8 and the arithmetic mean between 4 a and 2 b is 20, find the value of a and b

29 Insert 16 arithmetic means between 27 and - 24

30 Find the arithmetic sequence whose ninth term = 25 and the arithmetic mean between the third and fifth terms is 10

31 Find the number of the arithmetic means are inserted between 1 and 17 and the seventh mean equals three times the second mean

Arithmetic Series

1 - 4

Sum of Arithmetic Series

The students has made loud noise in the class and their teacher wanted to punish them indirectly. He had them sum the numbers from 1 up to 100 to involve them at work for longer time and to get quiet. After a few minutes, a seven - year old child named (Karl Gauss) had told the teacher that the sum is (5050) . In turn , the teacher asked him how he reached the correct answer.

The child had answered that the addition sum of 101 is repeated from adding the following numbers:

$1 + 100 , 2 + 99 , 3 + 98 , \dots , 50 + 51$ for fifty times

Thus, the addition sum is $50 \times 101 = 5050$

German scientist-
Karl Gauss
1777 - 1855

Learn

The Sum of the First n Terms of an Arithmetic Sequence

First: the sum of n^{th} terms of an arithmetic sequence in terms of its first term(a) and the last term (l)

its common difference d, the number of its terms is denoted by the symbol S_n and is given by the following series:

$$S_n = a + (a + d) + (a + 2d) + \dots + (l - d) + l \quad (1)$$

The series can be also written in the form:

$$S_n = l + (l - d) + (l - 2d) + \dots + (a + d) + a \quad (2)$$

By adding the two equations (1) and (2), we deduce that:

$$2S_n = (a + l) + (a + l) + (a + l) + \dots + (a + l) \text{ to } n \text{ times}$$

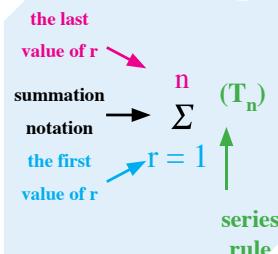
i.e. $2S_n = n(a + l)$ by dividing the two sides by 2

$$S_n = \frac{n}{2} (a + l)$$

 Example Use the summation notation Σ

1) Find $\sum_{r=5}^{24} (4r - 3)$

Remember



You will learn

- Arithmetic series.
- Find the sum of n terms of an arithmetic series in terms of its first and last terms
- Find the sum of n terms of an arithmetic series in terms of its first term and the common difference.

Key - terms

- arithmetic series
- Summation notation

Materials

- Scientific calculator

 Solution

$$n = 24 - 5 + 1 = 20$$

$$T_n = 4n - 3$$

$$T_5 = 4 \times 5 - 3 = 17, \quad T_{24} = 4 \times 24 - 3 = 93$$

$$S_n = \frac{n}{2} (a + \ell)$$

$$S_{20} = \frac{20}{2} (17 + 93) = 1100$$

**Find the number of the sequence terms
 n^{th} term of the sequence**

summation formula

by substituting $a = 17, \ell = 93, n = 20$

 Try to solve

1 Find:

a $\sum_{K=1}^{20} (6K + 5)$

b $\sum_{m=7}^{32} (12 - 5m)$

 Example

2 Find the sum of the arithmetic series $2 + 5 + 8 + \dots + 62$

 Solution

$$\ell = a + (n - 1)d$$

$$62 = 2 + (n - 1) \times 3$$

$$\text{i.e.: } 3n - 3 + 2 = 62$$

$$3n - 1 = 62$$

$$S_n = \frac{n}{2} (a + \ell)$$

$$S_{21} = \frac{21}{2} (2 + 62) = 672$$

n^{th} term of the sequence

by substituting $a = 2, d = 3$ and $\ell_n = 62$

then $n = 21$

summation formula

by substituting $a = 2, n = 21, T_n = 62$

Second: Finding the sum of n^{th} terms of an arithmetic sequence in terms of its first term and its common difference.

You know that $\ell = a + (n - 1)d$ and $S_n = \frac{n}{2} (a + \ell)$

by substituting from the first relation in the second relation, then:

$$S_n = \frac{n}{2} [a + a + (n - 1)d]$$

i.e.: $S_n = \frac{n}{2} [2a + (n - 1)d]$

 Example

3 In the arithmetic series $5 + 8 + 11 + \dots$ find:

- a The sum of its first twenty terms of the series .
- b The sum of ten terms starting from the seventh term .
- c The sum of the sequence terms starting from T_{10} up to T_{20}

 Solution

$$a = 5, \quad d = 8 - 5 = 3$$

a $S_n = \frac{n}{2} [2a + (n-1)d]$
 $S_{20} = \frac{20}{2} \times [2 \times 5 + (20-1) \times 3]$
 $S_n = 10(10 + 19 \times 3)$
 $= 10 \times 67 = 670$

b $T_n = a + (n-1)d$

$$\begin{aligned} T_7 &= a + 6d \\ &= 5 + 6 \times 3 = 23 \\ S_{10} &= \frac{10}{2} \times [2T_7 + (10-1) \times 3] \\ S_{10} &= 5 \times [2 \times 23 + 27] \\ &= 5 \times 73 = 365 \end{aligned}$$

c The sum of the sequence terms starting from T_{10} up to T_{20}

$$T_n = a + (n-1)d$$

$$\begin{aligned} T_{10} &= a + 9d \\ &= 5 + 9 \times 3 = 32 \end{aligned}$$

$$T_{20} = a + 19d = 5 + 19 \times 3 = 62$$

$$S_n = \frac{n}{2} (a + \ell)$$

$$\begin{aligned} S_{11} &= \frac{11}{2} (T_{10} + T_{20}) \\ &= \frac{11}{2} (32 + 62) = 517 \end{aligned}$$

summation formula

by substituting $a = 5$ and $d = 8 - 5 = 3$

by simplifying

n^{th} term of the sequence

by substituting $a = 5$, $d = 3$ and $n = 7$

by substituting in summation formula

by simplifying

n^{th} term of the sequence

by substituting $a = 5$, $d = 3$

summation formula

by substituting $T_{10} = 32$, $T_{20} = 62$, $n = 11$

Think:

Are there other solutions to find the sum of the sequence terms starting from T_{10} up to T_{20}

 Example

4 Find the arithmetic sequence in which : $T_1 = 11$, $T_n = 87$ and $S_n = 980$

 Solution

a Finding the value of n

$$S_n = \frac{n}{2} (a + \ell)$$

$$980 = \frac{n}{2} (11 + 87)$$

$$98 \times \frac{n}{2} = 980 \text{ then: } n = 20 \text{ terms}$$

b Finding the value of d

$$T_n = a + (n - 1)d$$

$$87 = 11 + 19d$$

$$19d = 87 - 11 = 76$$

$$d = 4$$

c Forming the sequence: $T_2 = 11 + 4 = 15$, $T_3 = 15 + 4 = 19$

The arithmetic sequence is (11, 15, 19, ..., 87)

summation formula

by substituting $T_1 = 11$, $T_n = 87$ and $S_n = 980$

by simplifying

n^{th} term

by substituting $T_1 = 11$, $n = 20$ and $T_n = 87$

by simplifying

and by dividing by 19

 Try to solve

2 Find the arithmetic sequence in which:

a $T_1 = 23$, $T_n = 86$, $S_n = 545$

b $T_1 = 17$, $T_n = -95$, $S_n = -585$

Exercises (1 - 4)

Complete

1 The sum of the first n terms of an arithmetic sequence whose first term is a and last term is ℓ is

2 The sum of the first n^{th} terms of an arithmetic sequence whose first term is a and its common difference is d is

3 $\sum_{k=1}^5 (2k + 1) =$

4 The sum of the first ten even number in the set of the natural numbers equals

5 The sum of the odd natural numbers which is greater than 10 and less than 30 equals

6 The sum of the natural numbers which is divisible by three and included between 30 and 50 equals

Choose the correct answer

7 The value of the arithmetic series $\sum_{r=1}^5 (2r + 1)$ equals:
 a 25 b 30 c 35 d 40

8 The value of the series: $4 + 9 + 14 + \dots + 5n - 1$ by using the summation notation equals :
 a $\sum_{r=4}^n (5r - 1)$ b $\sum_{r=1}^n (5r + 1)$ c $\sum_{r=1}^n (5r - 1)$ d $\sum_{r=1}^{5n-1} (3r + 1)$

9 The value of the series: $7 + 12 + 17 + 22$ by using the summation notation equals:
 a $\sum_{r=1}^4 (5r + 2)$ b $\sum_{r=1}^4 (4r + 3)$ c $\sum_{r=1}^4 (7r + 1)$ d $\sum_{r=1}^4 (3r + 4)$

10 The sum of the terms of the arithmetic sequence (3, 5, 7, ..., (2n + 1)) starting from its first term equals :

a $n(n + 1)$ b $n(n + 2)$ c $n(n + 5)$ d $n(n + 2) n(n + 3)$

Answer the following questions

11 Find the sum of the first ten terms of the arithmetic sequence (14, 18, 22, ...).

12 Find the sum of the first thirty terms of the sequence (T_n) where $T_n = 2n + 3$

13 Find the sum of the terms of the arithmetic sequence (2, 5, 8, ..., 80).

14 Find the number of the terms necessary to be taken from the sequence (27, 24, 21, ...) starting from the first term to vanish the sum.

15 If the sum of n-terms from an arithmetic sequence is identified by the rule: $S_n = 2n(7 - n)$, find:

a T_7
 b The number of terms necessary to be taken from the sequence starting from the first term to make the sum equal to - 240

16 Find the least number of terms that can be taken from the sequence (89, 81, 73, ...) starting from the first term to make the negative sum.

17 Find the greatest number of terms that can be taken from the sequence (25, 21, 17, ...) starting from the first term to make the positive sum

18 In the arithmetic sequence (5, 8, 11, ...), find:

a The sum of its first twenty terms.
 b The sum of ten terms starting from the seventh term.
 c The sum of the sequence terms starting from T_{10} up to T_{20}

19 In the sequence (T_n) = (32, 28, 24, ...).

a Find the order and value of its first negative term.
 b Find the number of terms which makes the sum greater than zero.

20 In the arithmetic sequence (25, 23, 21, ...), find:

a The greatest sum of the sequence.
 b The number of terms whose sum = 120 starting from the first term " Explain the existence of two answers".

21) Find the arithmetic sequence whose first term = 12 , last term = - 26 , and the sum of its terms = - 140.

22) Find the arithmetic sequence (T_n) whose second term = 13 , and the sum of its first ten terms = 235 .

23) Find the arithmetic sequence in which $T_4 = 24$ and the ratio between the sum of the first five terms to the sum of the next five terms directly is 1: 2 .

24) What is the arithmetic sequence whose first term is greater than twice its fifth term by 2 and the arithmetic mean of the third and sixth terms is 16? How many terms should be taken starting from the first term to make the sum equal to zero?

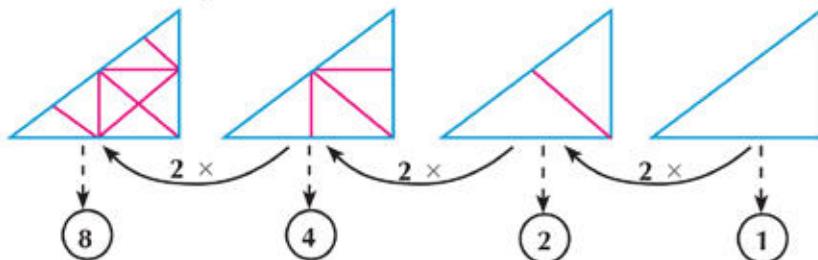
25) **Arts:** A school stage accommodates for 16 rows, if the first row contains 16 seats and each row next to it contains a number of seats more than the directly previous row for 4 seats, find the number of seats in this stage.

26) **Income:** Kareem has started his working life with a yearly salary of 19200 L.E. If he gets a yearly raise of 480 L.E, how much he will get by the end of the tenth year

Geometric Sequences

1 - 5

Check the small triangles in each of the following figures, then find their numbers. What do you notice?



Definition

The sequence (T_n) where $T_n \neq 0$ is called a geometric sequence if $\frac{T_{n+1}}{T_n} = \text{a constant}$ for each $n \in \mathbb{Z}^+$

1

The constant is called the common ratio of the sequence and is denoted by the symbol (r)

You will learn

- Definition of the geometric sequence
- Graphical representation of the geometric sequence
- n^{th} term of the geometric sequence
- Identifying the geometric sequence
- using scientific calculation
- Geometric means
- The relation between an arithmetic mean and a geometric mean of two numbers

Example

1 Show which of the following sequences (T_n) is geometric , then find the common ratio of each :

a $(T_n) = (2 \times 3^n)$ b $(T_n) = (4 n^2)$

c The sequence (T_n) where: $T_1 = 12$, $T_n = \frac{1}{4} \times T_{n-1}$ (where $n > 1$)

Solution

a $\because \frac{T_{n+1}}{T_n} = \frac{2 \times 3^{n+1}}{2 \times 3^n} = 3^{n+1-n} = 3$ **(constant)**

\therefore the sequence is geometric and its common ratio $r = 3$

b $\because \frac{T_{n+1}}{T_n} = \frac{4(n+1)^2}{4n^2}$ **(is not a constant)**

\therefore The sequence is not geometric

c $\because T_n = \frac{1}{4} \times T_{n-1}$ (where $n > 1$)

$\therefore \frac{T_n}{T_{n-1}} = \frac{1}{4}$ **(constant)**

\therefore The sequence is geometric and its common ratio $r = \frac{1}{4}$

Key - term

- Geometric Sequence
- n^{th} Term
- Increasing Sequence
- decreasing Sequence
- Alternating sign Sequence
- Geometric Mean

Materials

- Scientific Calculator
- Graphic programs

P Try to solve

1 Show which of the following sequences is geometric, then find its common ratio in case it is a geometric sequence:

a $(T_n) = (96, 48, 24, 12, 6, 3)$

b $(T_n) = (\frac{1}{243}, -\frac{1}{81}, -\frac{1}{27}, \frac{1}{9}, \frac{1}{3})$

c $(T_n) = (5 \times 2^n)$

d $(T_n) = (3(n+1)^2)$

The n^{th} Term of the geometric sequence

From definition (1) the n^{th} term of the geometric sequence (T_n) whose first term is a and common ratio is r can be deduced as follows:

$T_1 = a$, $T_2 = ar$ and $T_3 = ar^2$, by continuing this pattern, we find that the n^{th} term of this sequence is: $T_n = a r^{n-1}$

Example

2 In the geometric sequence $(2, 4, 8, \dots)$, find:

a The fifth term

b the order of the term whose value is 512

Solution

$$\because a = 2, r = \frac{4}{2} = 2, T_n = a \times r^{n-1}$$

$$\therefore T_5 = a r^4 = 2 \times 2^4 = 2 \times 16 = 32$$

$$\because T_n = a \times r^{n-1} \quad \therefore 2 \times 2^{n-1} = 512$$

$$\therefore 2^{n-1} = 2^8 \quad \therefore n-1 = 8$$

i.e. the value of the fifth term is 32

By dividing the two sides by 2

$$\therefore n = 9$$

i.e. the term whose value is 512 is the ninth term.

Identifying The Geometric Sequence

The geometric sequence can be identified whenever its first and common ratio are known (given).

Example

3 (T_n) is a geometric sequence and all of its terms are positive. If $T_3 + T_4 = 6T_2$, $T_7 = 320$, find this sequence.

Solution

$$\because T_3 + T_4 = 6T_2 \quad \therefore ar^2 + ar^3 = 6 \times ar$$

$$\therefore ar(r + r^2) = 6 \times ar \quad \text{by dividing the two sides by } ar \text{ (where } a \text{ and } r \text{ do not equal zero)}$$

$$\therefore r^2 + r = 6$$

$$\text{i.e.: } r^2 + r - 6 = 0$$

$$\therefore (r-2)(r+3) = 0 \quad \therefore r = 2 \text{ or } r = -3 \quad \text{refused (because the terms are positive)}$$

$$\therefore T_7 = 320 \quad \therefore ar^6 = 320 \quad \text{by substituting } r = 2$$

$$\therefore a \times 2^6 = 320 \quad \therefore 64a = 320 \quad \text{by dividing the two sides by 64}$$

$$\therefore a = 5$$

the sequence is $(5, 10, 20, \dots)$

Using the scientific calculator to write the geometric sequence

To write down the geometric sequence in which $a = 5$ and $r = 2$ we do the following:

We write the value of a (number 5) then press (=) then press (\times) and put the value of r (number 2) then press (=) then we get the second term of the sequence. By pressing (=) repeatedly, we get the next terms and so on

Example

4 **Education:** If the number of the students accepted in the high school stage in an educational administration increases at a rate of 4% yearly. How many students will be there after 6 years if the number of the students is 2400 students right now?

Solution

\therefore Number of students now = 2400

$$\therefore \text{Number of students in the second year} = 2400 (1 + 0.04) \\ = 2400 (1.04)$$

$$\therefore \text{Number of students in the third year} = 2400(1.04) + 2400(1.04) \times 0.04 \\ = 2400(1.04) (1 + 0.04) = 2400(1.04)^2 \text{ and so on ...}$$

i.e. the numbers of students form the geometric sequence

$$(2400, 2400(1.04), 2400(1.04)^2, \dots)$$

$a = 2400, r = 1.04, n = 6$ by substituting the rule of n^{th} term of the geometric sequence

$$T_n = a \times r^{n-1} \quad T_n = (2400) \times (1.04)^5 = 2919.966966$$

i.e. the number of students after 6 years equals 2920 students approximately.

Geometric Means

The geometric means are similar to the arithmetic means. They are the terms located between two non-successive terms in the geometric sequence. The common ratio of the geometric sequence is used to find these means.

Definition

If a, b and c are three successive terms of a geometric sequence, then b is known as the geometric mean between the two numbers a and c where: $\frac{b}{a} = \frac{c}{b}$
i.e. $b^2 = a c$ then $b = \pm \sqrt{a c}$

2

Verbal expression:

The geometric means which can be inserted between two numbers depend on the sign of those two numbers. Explain.

Tip
the geometric mean of a set of positive real values
 $T_1, T_2, T_3, \dots, T_n$ is known as the n^{th} root of the product of these values. I.e. the geometric mean = $\sqrt[n]{T_1 \times T_2 \times \dots \times T_n}$

Inserting a number of geometric means between two known quantities:

Example

5) Find the geometric means of the sequence: (4, ..., ..., ..., ..., ..., ..., 2916)

Solution

1- Find the number of the sequence terms

There are five means between the first and last terms in the geometric sequence

Thus, the number of the terms of the sequence $n = 2 + 5 = 7$

2- Find the value of r

By using the rule: $\ell = a r^{n-1}$

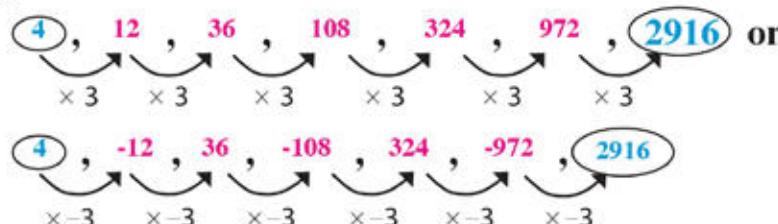
$$2916 = 4 \times r^{7-1} \quad \text{by substituting: } a = 4, \ell = 2916, n = 7$$

$$\text{i.e.: } 4 \times r^6 = 2916 \quad \text{by dividing the two sides by 4} \quad r^6 = 729$$

$$\text{i.e.: } r^6 = (\pm 3)^6 \text{ then } r = \pm 3$$

3- Use the value of r to find the geometric means required

The terms are:



the required means are 12, 36, 108, 324, 972 or -12, 36, -108, 324, -972

Tip

If: $T_1, T_2, T_3, \dots, T_n$ are positive real numbers, then:

$$\frac{T_1 + T_2 + T_3 + \dots + T_n}{n} \geq \sqrt[n]{T_1 T_2 T_3 \dots T_n}$$

 and the equality is satisfied only when: $T_1 = T_2 = T_3 = \dots = T_n$

The relation between the arithmetic and geometric means of two numbers:

If $x, y \in \mathbb{R}^+, x \neq y$

then: the arithmetic mean $(A) = \frac{x+y}{2}$ and the positive geometric mean $(G) = \sqrt{xy}$

$$\therefore A - G = \frac{x+y}{2} - \sqrt{xy} = \frac{x - 2\sqrt{xy} + y}{2}$$

$$\therefore = \frac{(\sqrt{x} - \sqrt{y})^2}{2} > 0$$

(by putting the expression in a form of a complete square)

$\therefore A > G$. So that the positive geometric mean is greater than the negative geometric mean

Then the arithmetic mean of two different positive real numbers is greater than their geometric mean.

Critical thinking: What do you expect about the relation between the arithmetic and geometric means of two equal positive real numbers?

 Example

6) If $6a, 3b, 2c, 2d$ are positive quantities in an arithmetic sequence, prove that $bc > 2ad$

 Solution

$\therefore 3b$ is an arithmetic mean between $6a$ and $2c$

where the arithmetic mean $>$ the positive geometric mean

$\therefore 3b > \sqrt{6a \times 2c}$ by squaring the two sides

$$\therefore 9b^2 > 12ac \quad (1)$$

Similarly $2c$ is an arithmetic mean between $3b$ and $2d$

$\therefore 2c > \sqrt{3b \times 2d}$ by squaring the two sides

$$4c^2 > 6bd \quad (2)$$

from (1) and (2)

$$9b^2 \times 4c^2 > 12ac \times 6bd$$

By dividing the two sides by $36bc$ ($b, c \in \mathbb{R}_+$)

$$\therefore bc > 2ad$$

 Exercises (1 - 5)

Complete

- 1) The fifth term of the sequence (T_n) where $T_n = 2 \times (3)^{n-1}$ equals
- 2) The n^{th} term of the geometric sequence $(3, -6, 12, \dots)$ is
- 3) The sixth term of geometric sequence $(\frac{1}{243}, \frac{1}{81}, \frac{1}{27}, \dots)$ is
- 4) The geometric mean of the two numbers 4 and 16 is
- 5) If the geometric mean of the two numbers 9 and y is 15, then $y =$
- 6) If a, b and c are three consecutive positive terms of a geometric sequence, then $b <$

choose the correct answer

- 7) The next term of the geometric sequence $(8, 6, \frac{9}{2}, \frac{27}{8}, \dots)$ is:
 a) $\frac{11}{8}$ b) $\frac{27}{16}$ c) $\frac{9}{4}$ d) $\frac{81}{32}$

8 All the following sequence are geometric except:

a $(3, -6, 12, -24, \dots)$ **b** $(\log a, \log a^2, \log a^3, \log a^4, \dots)$
c $(\frac{3}{2}, 1, \frac{2}{3}, \frac{4}{9})$ **d** $(\frac{3b}{2a}, 3, \frac{6a}{b}, \frac{12a^2}{b^2})$

9 Of all the following sequence , the geometric sequence is:

a $(T_n) = (4n^2)$ for each $n \geq 1$ **b** $(T_n) = (\frac{1}{4} \times T_{n-1})$ for each $n \geq 2$
c $(T_n) = (2^n - 1)$ for each $n \geq 1$ **d** $(T_n) = (\log(3 \times 2^n))$ for each $n \geq 1$

10 If a , b and c three consecutive positive terms of a geometric sequence, then:

a $\frac{a+c}{2} > b$ **b** $\frac{a+c}{2} < b$
c $\frac{a+c}{2} = b$ **d** $b^2 = a + c$

Answer the following questions:

11 If (T_n) is a sequence where $T_n = 5 \times 2^n$, prove that it is a geometric sequence, then find its first three terms.

12 In the geometric sequence $(\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, -1, \dots)$, find:

a Its tenth term.
b The order of the term whose value = 1024

13 Find the geometric sequence whose common ratio $= \frac{1}{2}$ and its third term $= 24$.

14 Find the geometric sequence in which $T_3 = 12$ and $T_8 = 384$.

15 Show that the sequence (T_n) where: $T_n = \frac{3}{8}(2)^n$ is a geometric sequence , then find its eighth term and the order of the term whose value is 768

16 Find the geometric mean between 16 and 49.

17 Find the two numbers whose arithmetic mean is 5 and their geometric mean is 3.

18 Find two positive numbers whose positive geometric mean is greater than one of those two numbers by 2 and is less than the other number by 3.

19 Insert five positive geometric means between $\frac{8}{27}, \frac{27}{8}$

20 If several geometric means are inserted between 2 and 1458 and the ratio between the sum of the first two means to the sum of the last two means is 1:27, find the number of these means.

21 Find the geometric sequence whose all terms are positive, the first term is four times the third term and the sum of the second and fifth terms = 36 .

22 If x , y , z and ℓ are positive quantities of a geometric sequence , prove that $x + \ell > y + z$.

23 **Environment:** Water is poured in a water tank at a rate of twice the directly previous day. How many days does the water tank hold 1536 liters if 12 liters has been poured in the tank on the first day?

24 **Population :** The population of a city increases at a constant rate of 3% per year. How many populations are there in this city after 5 years if the populations are 600000 at present?

Geometric Series

Sum of the Geometric Series

We know that the geometric series is the sum of the terms of the geometric sequence and the sum of n terms is denoted by the symbol S_n .

Sum of the First n Terms of a Geometric Series

First: To find the sum of n terms of a geometric series in terms of its first term and common ratio:

If $a + ar + ar^2 + \dots + ar^{n-1}$ is a geometric series whose first term is a and its common ratio is r , then the sum of S_n of this series can be found as follows:

$$S_n = a + ar + ar^2 + \dots + ar^{n-2} + ar^{n-1} \quad (1)$$

By multiplying the two sides by r then:

$$rS_n = ar + ar^2 + ar^3 + \dots + ar^{n-1} + ar^n \quad (2)$$

By subtracting the two equations, then:

$$S_n - rS_n = a - ar^n$$

i.e.: $S_n(1 - r) = a(1 - r^n)$

By dividing the two sides by $(1 - r)$ in a condition $1 - r \neq 0$

$$S_n = \frac{a(1 - r^n)}{1 - r}, r \neq 1$$

Example

1 Find the sum of the geometric sequence in which : $a = 3$, $r = 2$, $n = 8$

Solution

$$S_n = \frac{a(1 - r^n)}{1 - r} \text{ the sum formula of the geometric sequence}$$

$$S_8 = \frac{3(1 - 2^8)}{1 - 2} \text{ by substituting: } a = 3, r = 2 \text{ and } n = 8$$

$$S_8 = 3 \times 255 = 765 \quad \text{by simplifying}$$

You will learn

- Sum of the geometric series.
- Forming the geometric sequence
- Infinite geometric series
- Sum of infinite geometric series.
- Converting the recurring decimal into a common fraction .

Key - term

- Geometric Series
- Infinite Geometric Series

Materials

- Scientific Calculator
- Graphical Programs

Second: to find the sum of terms of a geometric series in terms of its first and last terms

We know that: $S_n = \frac{a - ar^n}{1 - r}$ (1)

and: $\ell = ar^{n-1}$ by multiplying the two sides by r

then $\ell r = ar^n$ (2)

by substituting from (2) in (1) then:

$$S_n = \frac{a - \ell r}{1 - r}, r \neq 1$$

(2) Find the sum of the geometric series : $1 + 3 + 9 + \dots + 6561$

$$S_n = \frac{a - \ell r}{1 - r}$$

the sum formula of the geometric sequence

$$S = \frac{1 - 6561 \times 3}{1 - 3}$$

by substituting : $a = 1$, $r = 3$ and $\ell = 6561$

$$S = \frac{19682}{2} = 9841$$

by simplifying

Using the Summation Notation

(3) Find $\sum_{r=5}^{12} 3(2)^{r-1}$

$$T_5 = a = 3(2)^{5-1} = 48, r = 2, n = 12 - 5 + 1 = 8$$

the sum formula of the geometric sequence

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

by substituting: $a = 48, r = 2, n = 8$

$$S_8 = \frac{48(1 - 2^8)}{1 - 2}$$

by simplifying

Think: Can you find the sum in the previous example in terms of a , ℓ and r ? How?

Example Forming the geometric sequence

4 If the sum of the first n terms of a geometric sequence is given by the rule: $S_n = 128 - 2^{7-n}$, find the sequence and its seventh term.

Solution

let: $n = 1$

$$\therefore S_1 = 128 - 2^{7-1} = 128 - 64 = 64 \text{ i.e. } T_1 = 64$$

let: $n = 2$

$$\therefore S_2 = 128 - 2^{7-2} = 128 - 32 = 96$$

$$\because T_1 + T_2 = S_2 \quad \therefore 64 + T_2 = 96 \quad \therefore T_2 = 96 - 64 = 32$$

let: $n = 3$

$$c_3 = 128 - 2^{7-3}$$

$$\text{i.e. } S_3 = 128 - 16 = 112$$

$$\because T_1 + T_2 + T_3 = S_3$$

$$\text{i.e. } T_3 = S_3 - S_2$$

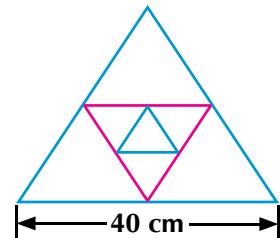
$$\therefore T_3 = 112 - 96 = 16$$

$$\therefore \text{the sequence is: } (64, 32, 16, \dots), \quad T_7 = ar^6 = 64 \left(\frac{1}{2}\right)^6 = 1$$

Notice : from the previous, we can deduce that $T_n = S_n - S_{n-1}$ and find the two values of a and r then $T_7 = S_7 - S_6 = (128 - 2^{7-7}) - (128 - 2^{7-6}) = -1 + 2 = 1$

Example

5 **Geometry** The opposite figure shows an equilateral triangle whose side length is 40cm. Another triangle is drawn interiorly through connecting the points representing the mid-points of the greatest triangle. The interior triangles are repeatedly drawn the same way, find the sum of the perimeters of the first 10 triangles in this pattern to the nearest integer.



Solution

The perimeter of the greatest triangle = $3 \times 40 = 120$

The perimeter of the next smaller triangle = $3 \times 20 = 60$

The perimeter of the next smaller triangle = $3 \times 10 = 30$

i.e. the pattern is : 120 , 60 , 30 , to 10 terms

sum of perimeters = $120 + 60 + 30 + \dots$ it is the sum of a geometric series

the sum formula of the geometric sequence: $S_n = \frac{a(1 - r^n)}{1 - r}$

by substituting: $a = 120$, $r = \frac{1}{2}$, $n = 10$

By simplifying and using the calculator $S_{10} = \frac{120 \left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}} \simeq 240$

Remember

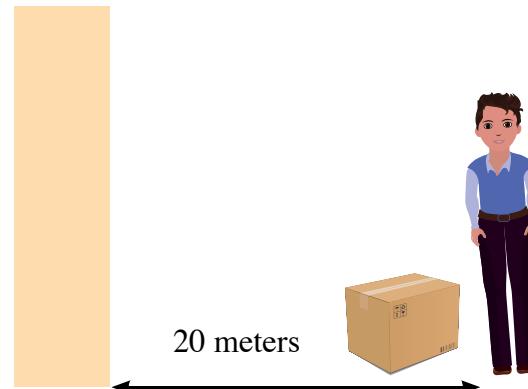
Perimeter of equilateral triangle = $3 \times$ its side length

Infinite geometric series

Think and discuss

Zyad has wanted to move a box in the direction of a wall distant 20 m from him over some stages so that the distance traveled by the box equals half the remaining distance after each stage. Can Zyad reach the wall?

You can answer this question through learning infinite geometric series .



Definition 2

The infinite geometric series has an infinite number of terms. If their sum is a real number, the series is convergent because its sum gets near to a real number . If the series does not have a sum , it is divergent

In Think and discuss, the sum of the distances traveled by Zyad is given by the series $10 + 5 + 2.5 + 1.25 + \dots$ when ever its terms increase, the sum gets nearer to 20 m. It is the real sum of the series. As a result , we can assume that Zyad will reach the wall when the terms of the sequence increase infinitely. The figure opposite illustrates the graphical representation of the sum of S_n , so the sum of the convergent series gets near to a real number where $|r| < 1$ and the series is divergent if the sum does not get near to a real number where $|r| \geq 1$

Example

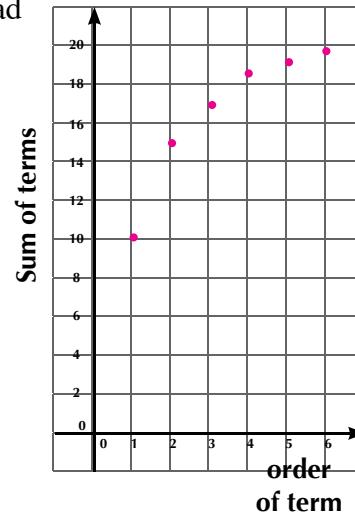
6 Which of the following series can you sum an infinite number of its terms ? Explain

a $75 + 45 + 27 + \dots$ b $24 + 36 + 54 + \dots$

Solution

a Find the common ratio of the geometric series $r = \frac{45}{75} = \frac{3}{5}$, then the series is convergent because $-1 < \frac{3}{5} < 1$

b Find the common ratio of the geometric series $r = \frac{36}{24} = \frac{3}{2}$ then the series is divergent because: $\frac{3}{2} > 1$



Remember

If $|r| < 1$ then:
 $-1 < r < 1$

If $|r| \geq 1$ then:
 $r \geq 1$ or $r \leq -1$

Sum of Infinite Geometric Series

We knew that the sum of n terms of the geometric series is given by the relation $S_n = \frac{a(1 - r^n)}{1 - r}$

and when we sum an infinite number of its terms, then r^n gets near to zero when $-1 < r < 1$

and the sum is:

$$S_{\infty} = \frac{a}{1 - r}$$

Critical thinking: Can the sum of an infinite geometric series be found when $|r| \geq 1$? Explain .

Verbal expression: Can you find the sum of the geometric series in **think and discuss**? Find the two values of a and b and use the rule of the sum of an infinite number of terms of a geometric series.

Example

7 Find the sum for each of the following two geometric series if found:

a $\frac{81}{8} + \frac{27}{4} + \frac{9}{2} + \dots$

b $\frac{2}{3} + \frac{5}{6} + \frac{25}{24} + \dots$

Solution

a Find the common ratio of the geometric sequence: $r = \frac{27}{4} \div \frac{81}{8} = \frac{27}{4} \times \frac{8}{81} = \frac{2}{3}$

$\because -1 < \frac{2}{3} < 1$ \therefore The series has a sum

$\therefore a = \frac{81}{8}$, $r = \frac{2}{3}$ by substituting in the sum formula $S_{\infty} = \frac{a}{1 - r}$

$$\therefore S_{\infty} = \frac{\frac{81}{8}}{1 - \frac{2}{3}} = \frac{\frac{81}{8}}{\frac{1}{3}} = \frac{243}{8}$$

b Find the common ratio of the geometric sequence: $r = \frac{5}{6} \div \frac{2}{3} = \frac{5}{6} \times \frac{3}{2} = \frac{5}{4}$

$\because \frac{5}{4} > 1$ \therefore The series is divergent and has no sum

Example Use the summation notation

8 Find $\sum_{r=1}^{\infty} 42 \left(\frac{6}{7}\right)^{r-1}$

Solution

Sum formula of the geometric sequence: $S_{\infty} = \frac{a}{1 - r}$

by substituting: $a = 42$ and $r = \frac{6}{7}$: then $S_{\infty} = \frac{42}{1 - \frac{6}{7}} = 294$

Converting a Recurring Decimal Into a Common Fraction

Example

9 Put $0.\overline{432}$ in the form of a common fraction

Solution

first: using the sum of an infinite geometric series

$$0.\overline{432} = 0.432 + 0.000432 + 0.000000432 + \dots$$

sum formula of the geometric sequence: $S_{\infty} = \frac{a}{1 - r}$

let $a = \frac{432}{1000}$, $r = \frac{1}{1000}$ then $S_{\infty} = \frac{\frac{432}{1000}}{1 - \frac{1}{1000}}$

$$S_{\infty} = \frac{432}{1000} \times \frac{1000}{999} = \frac{16}{37}$$

by simplifying

Try to solve

1 Put each of the following decimals in the form of a common fraction $0.\overline{6}$, $0.\overline{63}$, $0.4\overline{6}$, $0.6\overline{54}$

Exercises (1 - 6)

Choose the correct answer

1 The sum of an infinite number of terms of the sequence $(8, 4, 2, \dots)$ is:

a 16 **b** 20 **c** 24 **d** 30

2 If the sum of an infinite number of terms of a geometric sequence whose common ratio is $\frac{1}{3}$ is $13\frac{1}{2}$ then its first term equals :

a 6 **b** 8 **c** 9 **d** 12

3 If the sum of an infinite number of terms of a geometric sequence whose first term is 12 is 96 , then its common ratio equals:

a $\frac{1}{3}$ **b** $\frac{1}{2}$ **c** $\frac{7}{8}$ **d** $\frac{3}{4}$

4 A geometric sequence in which the sum of the first n terms is given by the relation $S_n = 3^{n+1} - 4$. then the third term equals:

a 18 **b** 23 **c** 54 **d** 77

5 A geometric sequence whose first term equals the sum of the next infinite terms, then its common ratio equals:

a 0.5 **b** 0.333 **c** 0.25 **d** 0.666

Answer the following questions:

6 Find the sum for each of the following geometric sequences:

a $(6, 12, 24, \dots \text{ to 6 terms})$ **b** $(125, 25, 5, \dots \text{ to 6 terms})$

c $(3, -6, 12, \dots, 768)$

7 Which of the following geometric sequences can be summed up to ∞ , then find the sum if possible:

a (24 , 12 , 6 ,) **b** (3 , - 6 , 12 ,)

c ($\frac{1}{32}$, $\frac{1}{16}$, $\frac{1}{8}$,) **d** ($2 \times 5^{1-n}$)

8 Find the sum of an infinite number of terms for each of the following geometric sequence:

a (3 , $\sqrt{3}$, 1 , ...) **b** (T_n) = (3^{3-n})

9 Put each of the following recurring decimals in the form of common fractions using the infinite geometric sequence: $0.\overline{7}$, $0.2\overline{4}$, $0.8\overline{63}$

10 Find the geometric sequence whose first term = 243 , last term = 1 , and the sum of its terms = 364

11 Find the geometric sequence whose sum is 1093 , last term is 729 and its common ratio is 3

12 How many terms are to be taken from the geometric sequence (3 , 6 , 12 , ...) starting from its first term to make the sum of these terms = 381?

13 Prove that the sequence (T_n) = ($10 \times 2^{n-2}$) is a geometric sequence, then find the number of its terms whose sum is 2555 starting from the first term.

14 Find the number of the terms of the geometric sequence whose sum of its terms is $121\frac{4}{9}$ and its first term equals 81 and the last term equals $\frac{1}{9}$.

15 (T_n) is a geometric sequence whose terms are positive in which $T_2 = 6$ and $T_3 - T_1 = 9$. Find the sequence and sum of the first twelve terms.

16 Find the geometric sequence whose sum of its first five terms = 7.75 and the sum of the consecutive five terms = 248 .

17 The first term of a geometric sequence of an infinite number of terms = 18 and the fourth term = $\frac{16}{3}$. What is the sum of this sequence?

18 If the sum of an infinite geometric sequence is $\frac{375}{4}$, and the sum of its first and second terms is 90, prove that there are two sequences and find them .

19 Find the geometric sequence whose sum of its first and second terms = 16 , and the sum of an infinite number of its terms = 25.

20 Find the infinite geometric sequence whose terms are positive, its first term is greater than its second term by 30 and the sum of an infinite number of its terms equals $\frac{135}{2}$.

21 (T_n) is a geometric sequence in which $T_1 + T_4 = 70$, $T_2 + T_3 = 60$, prove that there are two sequences and an infinite number of the terms of one of them can be summed and find this sum starting from its first term.

22) (T_n) is a geometric sequence in which $T_2 - T_6 = 45$ and the first $S_4 = 180$ find the sequence and show that there are an infinite number of its terms can be summed and find this sum .

23) Find the infinite geometric sequence whose first term = the sum of the next infinite terms of it and the sum of its first and second terms = 9.

24) Find the infinite geometric sequence in which any of its terms equals twice the sum of the next infinite terms of it, and its fourth term =3.

25) **Mining:** A gold mine produces 4200 kg in the first year. If the production of that mine decreases at a rate of 10% yearly of the production of the directly previous year, find the production of that mine in the eighth year, then calculate the production of the mine within the first eight years.

First: Choose the correct answer

- 1 The sequence whose rule is : $T_n = \frac{(-1)^n}{3n-2}$ is called a(n) sequence:
 a) increasing b) decreasing c) alternating d) constant
- 2 The arithmetic series: $3 + 7 + 11 + \dots + 35$ is written using the summation notation as follows:
 a) $\sum_{r=1}^8 (4r - 1)$ b) $\sum_{r=1}^9 (2r - 1)$ c) $\sum_{r=1}^9 (3r - 4)$ d) $\sum_{r=1}^8 (3r - 4)$
- 3 If $2a + 2$, $6a - 2$ and $7a$ are three consecutive terms of an arithmetic sequence , then a equals:
 a) 1 b) 2 c) 3 d) 4
- 4 The value of the arithmetic series $\sum_{r=3}^8 (2r + 1)$ equals:
 a) 64 b) 72 c) 76 d) 80
- 5 If the sum of the first n terms of a geometric sequence is given by the relation $S_n = 3(3^n - 1)$, then its third term equals:
 a) 24 b) 36 c) 48 d) 54
- 6 Show which of the sequences (T_n) is increasing , decreasing, or otherwise in each of the following:
 a) $(T_n) = (3 - 2n)$ b) $(T_n) = (2(\frac{3}{2})^{n-1})$ c) $((-1)^n(n+1))$
- 7 If you know that $\sum_{r=1}^n r = \frac{n(n+1)}{2}$, $\sum_{r=1}^n r^2 = \frac{n(n+1)(2n+1)}{6}$, then use the properties of the summation notation Σ to find the value for each of the following:
 a) $\sum_{r=1}^n (r+2)$ b) $\sum_{r=1}^8 (r^2 - 3)$
- 8 Determine which of the following sequences is arithmetic and which is geometric , then find the common difference or common ratio of each.
 a) (21 , 14 , 7 , ...) b) (-7 , -12 , -17 , ...) c) (-3 , 12 , -48 , ...)
 d) $(\frac{1}{5}, \frac{4}{5}, \frac{7}{5}, \dots)$ e) $(\frac{1}{2}, -\frac{1}{3}, \frac{2}{9}, \dots)$ f) $(\frac{1}{3}, \frac{5}{6}, \frac{4}{3}, \dots)$
- 9 In the arithmetic sequence (12 , 14 , 16 , ...) find:
 a) the value of its eighth term. b) the order of the term whose value is 102
- 10 (T_n) is an arithmetic sequence in which $T_6 = 16$ and $T_{20} = -26$, find this sequence.
- 11 Find the arithmetic sequence whose sixth term = 34 and the sum of its seventh and ninth terms = 88, then find the order of the first term whose value is greater than 105 .
- 12 Find the arithmetic sequence whose sum of its second and fourth means equals 12 and the seventh mean is greater than the third mean for 4.

13) Find the geometric sequence whose first term = 7 and fifth term = 112 .

14) A geometric sequence in which its third term equals the multiplicative inverse of its first term and the fifth term equals $\frac{1}{125}$, prove that there are two solutions, then find the two sequences.

15) (T_n) is a geometric sequence where $T_n = 7 \times (3)^{n-1}$, find the geometric mean between T_3 and T_7

16) If 4, b and c are arithmetically sequent and 2, b + 3 and 5 c are geometrically sequent, find the value of b and c

17) If $\frac{1}{2} a$, b and c are positive quantities in a geometric sequence, prove that $4b < 1 + 2c$

18) **Production:** An oil well produced 560000 barrels of oil in its first year. If the production decreases yearly at a rate of 4% of the directly previous year, find the **maximum** production of that well .

19) **Geometry:** A rectangle whose length is 16cm and width 12cm. If its sides are bisected , then the sides of the rectangle resulted from connecting the midpoints of the sides are also bisected and so on by repeating the action to infinity, find the sum of the perimeters of the drawn rectangles..

20) **Health:** A patient takes a certain type of medicine. The doctor has recommended to decrease the number of the pills at a rate of 3 pills per week of the directly previous week . How many weeks does the patient need to stop taking these pills completely, if he starts taking 21 pills in the first week?

21) **Salaries:** An employee gets a monthly salary of 1200 L.E in the first year. If his salary increases at a rate of 10% yearly of the directly previous year, use summation notation to write the sum of what this employee gets within five years, then find this sum.

22) **Water:** If water flows at a rate of 25 liters in the first minute from the faucet , then the flow of water increases at a rate of two liters each next minute. How many minutes is required to get the sum of water to be 880 liters?

23) A ball fell down from a certain height on the ground surface, then it rebounds back two third of the directly previous height . If the ball fell from a height of 90 meters, find the sum of the distances which the ball covers till to be at rest.

24) If the first term of a geometric sequence equals 81 and its sixth term equals $\frac{1}{3}$, find the sum of an infinite number of its terms starting from its third term.

Unit Two

Permutations, Combinations

Unit introduction

Counting is an important part of the basic skills in mathematics. We regularly face a lot of problems that need to be solved. We need to do counting operations in different ways to solve them. In this unit, we are going to identify different strategies for counting such as the fundamental counting principle and the most important applications of it:

Permutations. They are used to know the number of methods used to order the elements of a set with all possible methods.

Combinations. They mean to choose disregarding the order.

Scientists such as Omar Alkhaim, Isac Newton and Pascal had played a great role in this field which is still ongoing up to day.

Unit objectives

By the end of the unit and doing the activities involved, the student should be able to:

- Identify the counting principle and simple applications on it.
- Use the computer to calculate each of permutations and combinations.
- Identify an introduction about the permutation and combination and the relation between them.

Key terms

❖ Fundamental Counting Principle	❖ Factorial	❖ Order
❖ Conditional Counting Principle	❖ Permutations	❖ Committee
❖ Operation	❖ Combinations	❖ Subset
❖ Tree Diagram	❖ Elements	

Lessons of the unit

Lesson (2 - 1): Counting Principle .

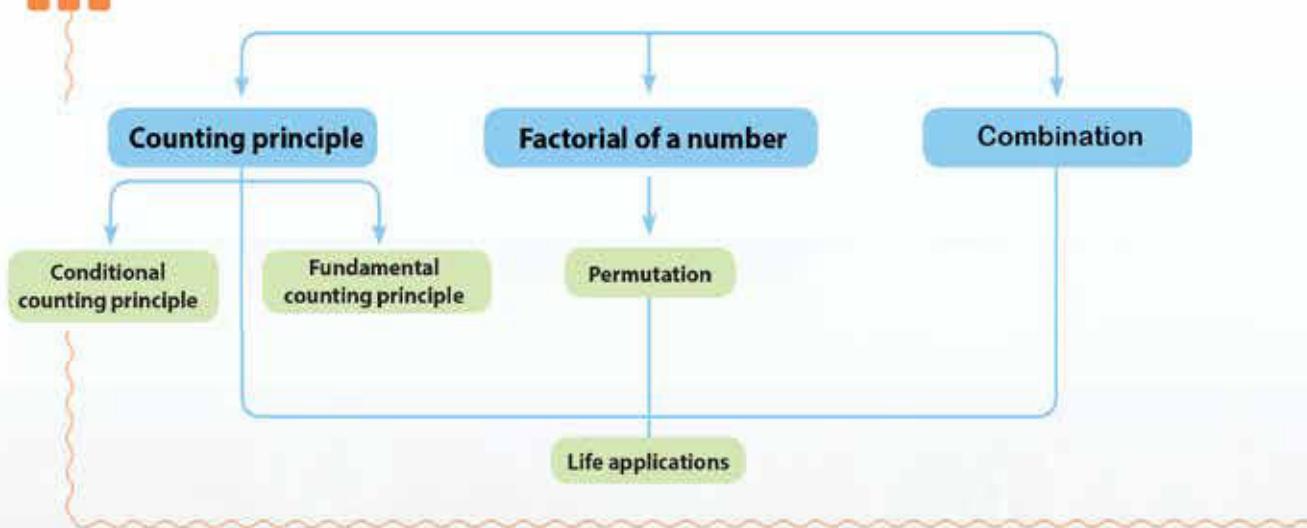
Lesson (2 - 2): Permutations.

Lesson (2 - 3): Combinations

Materials

Scientific calculator - computer - graphic programs

Unit planning guide



2 - 1

We will learn

- The concept of counting principle and simple applications on it.
- Fundamental counting principle.
- Conditional counting principle.

Key - term

- Fundamental Counting Principle
- Operation
- Tree Diagram

Materials

- Scientific Calculator
- Graphic program

Think and discuss

How many ways are there to choose, if you are asked to wear a t-shirt and a pair of pants out of 2 t-shirts and 3 pairs of pants?

T shirt B

T shirt A

Example

1 How many ways are there to choose a male student out of three students (Ashraf - Mohamed - Hassan) and a female student out of two students (Samar - Mona)?

Pants x

Pants y

Pants z

Solution

In this example, we find that it is easy to know the number of ways of choosing. For example, we can choose Ashraf, Samar or Ashraf, Mona or Mohamed, Mona or Hassan, Samar .. etc. We are going to express that by the following graphical diagram called tree diagram:

Male students	Female students	Choice
Ashraf	Samar	Ashraf, Samar
	Mona	Ashraf, Mona
Mohamed	Samar	Mohamed, Samar
	Mona	Mohamed, Mona
Hassan	Samar	Hassan, Samar
	Mona	Hassan, Mona

The number of ways to choose a male student out of three students = 3 ways.

The number of ways to choose a female student out of two students = 2 ways

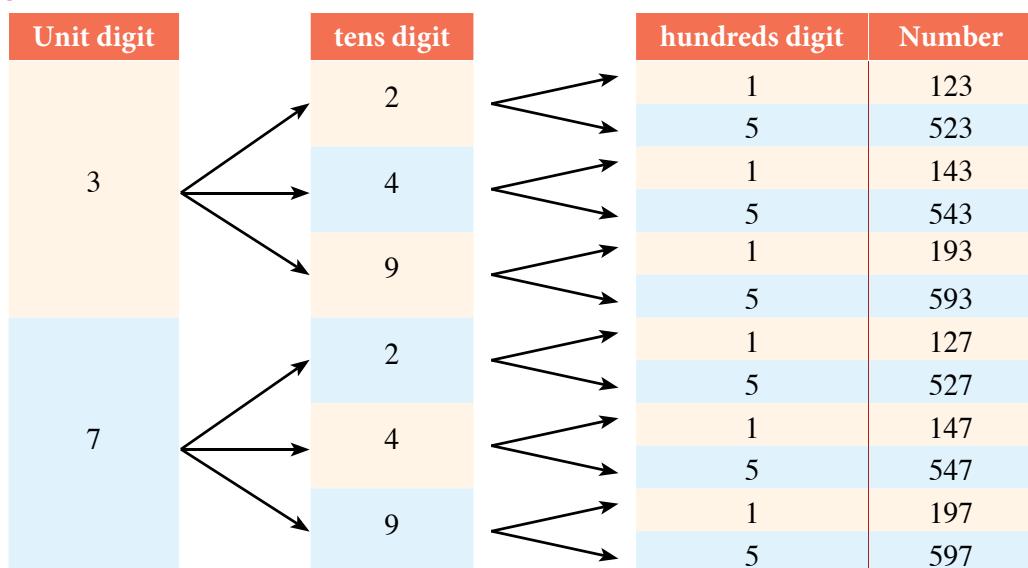
∴ Number of ways of choosing = $3 \times 2 = 6$ ways

Try to solve

1 In **think and discuss** , How many possible ways of choosing are there?

Example

2 How many three- digit numbers so that the unit digit is from the elements {3, 7} the tens digit is from the elements {2, 4, 9} and the hundreds digit is from the elements {1, 5} are there?

Solution

From the tree diagram, we find that:

The number of ways to choose the unit digit \times number of ways to choose tens digit \times number of ways to choose hundreds digit $= 2 \times 3 \times 2 = 12$ ways

The previous examples support the following definition:

Learn**Fundamental Counting Principle**

Definition: If the number of ways to perform a certain task is m_1 way , the number of ways to perform another certain task is m_2 way and the number of ways to perform a third certain task is m_3 way and so on ..., then the number of ways to perform these tasks together $= m_1 \times m_2 \times m_3 \times \dots \times m_n$

Example

3) How many ways can khaled have a meal out of three meals (Liver - chicken - fish) and a drink out of three drinks (orange - lemon - Mango)?

Solution

Number of ways to choose a meal $= 3$ ways and the number of ways to choose a drink $= 3$ ways.

The total number of ways to choose $= 3 \times 3 = 9$ ways.

Try to solve

2) A restaurant presents 6 types of pies, 4 types of salads and 3 types of drinks. How many meals can the restaurant present daily so that a meal includes a type from each of pies, salads and drinks?

Example Conditional Counting Principle

4) How many different three -digit numbers can be formed from the numbers $\{0, 1, 2, 3, 4\}$?

Solution

Start with the conditional hundreds digit (Zero can't be used left side)

Number of ways of choosing the digit in hundreds digit = 4

place	hundred	tens	ones
No of ways	4	4	3

Number of ways of choosing the digit in tens digit = 4

Number of ways of choosing the digit in unit digit = 3

∴ The total number of ways of choosing = $4 \times 4 \times 3 = 48$ ways

P Try to solve

3) How many ways can a different four - digit number be formed from the numbers {2, 3, 4, 7}, so that the tens digit is even.

Exercises (2 - 1)

Choose the correct answer:

- 1) The number of ways of sitting 4 students on 4 seats in a row equals :
 a 1 b $4 + 4$ c 4×4 d $4 \times 3 \times 2 \times 1$
- 2) The number of the different two - digit numbers taken from the numbers { 5, 3, 0, 2} equals:
 a 3×2 b 4×2 c 3×3 d 3×4
- 3) The number of the different three-digit odd numbers taken from the numbers {2 , 3, 6, 8} equals:
 a $8 \times 6 \times 3$ b $4 \times 3 \times 3$ c $4 \times 3 \times 2$ d $2 \times 3 \times 1$
- 4) How many three -digit numbers can be formed from the elements {2, 3, 5}?
- 5) How many different four - digit numbers can be formed from the elements {2, 3, 6, 8} so that the unit digit is 6?
- 6) The licence plates of cars in a governorate start with three letters followed by three digits except Zero. How many plates can be got assuming that there is no repetition for any letter or digit in the licence plates?
- 7) How many different three-digit numbers can be taken from the numbers {2, 5, 8, 9} so that these numbers are less than 900?
- 8) If you know that the set of the numbers of mobile networks in a country is made up of an eleven-digit number. If the number (025) is constant on left side, find the greatest number of phone lines which the mobile network can stand .

Factorial of a Number - Permutations

Unit two

2 - 2

Think and discuss

Use what you learned in the previous lesson to answer the following questions:

- 1) How many ways can 4 students sit on three seats in a row?
- 2) How many ways can 5 racers stand on the edge of a swimming pool to jump?

Learn

Definition

Factorial: The factorial of a positive integer n is written as $|n|$ and equals the product of all the positive integers which are lesser than or equal n where:

1

$$|n| = n(n-1)(n-2)\dots 3 \times 2 \times 1$$

Notice that

- When $n = 0$ then $|0| = 1$
- When $n = 1$ then $|1| = 1$
- $|4| = 4 \times 3 \times 2 \times 1 = 4|3|$,
- $|6| = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 6|5|$

In general: $|n| = n|n-1|$ where $n \in \mathbb{Z}^+$

Example

- 1 a) Find $\frac{|10|}{|8|}$ b) If $|n| = 120$ find the value of n

Solution

$$a) \frac{|10|}{|8|} = \frac{10 \times 9|8|}{|8|} = 10 \times 9 = 90$$

$$b) |n| = 5 \times 4 \times 3 \times 2 \times 1 \therefore |n| = |5| \text{ then } n = 5$$

Try to solve

- 1 Find: a) $\frac{|15|}{|12|}$ b) $\frac{|7|}{|5|} + \frac{|9|}{|7|}$

Example

- 2 Find the solution set of the equation: $\frac{|n|}{|n-2|} = 30$

We will learn

- Factorial of a number
- Permutations

Key - term

- Factorial of a Number
- Permutatuins
- Sub-Permutation

Materials

- Scientific calculator
- Graphical programs

 Solution

$$\therefore \frac{\underline{\underline{n}}}{\underline{\underline{n-2}}} = \frac{\underline{\underline{n(n-1)}}}{\underline{\underline{n-2}}} = 30 \quad \therefore n(n-1) = 6 \times 5 \quad \therefore n = 6$$

 Try to solve

(2) If $\frac{1}{\underline{\underline{n}}} + \frac{2}{\underline{\underline{n+1}}} = \frac{56}{\underline{\underline{n+2}}}$ find the value of n

Critical thinking: if: $\underline{\underline{a}} = \underline{\underline{0}}$ find the value of a .

Permutations

Introductory example: How many ways can different three-digit numbers be formed from the set of numbers $\{2, 3, 5\}$?

The numbers are: 532 , 352 , 523 , 253 , 325, 235. Each number of these numbers is called a permutation of the numbers

and its number $= 3 \times 2 \times 1$ **and is written as** 3p_3 **and is read as** (3 p 3).

The following table illustrates that:

Hundreds	Tens	Unit digit
3	2	1

So, the permutation for a number of objects is to put them in a certain arrangement

Definition

The number of permutations of n different objects taking r at a time is denoted by the symbol ${}^n p_r$ where:

${}^n p_r = n(n-1)(n-2) \dots (n-r+1)$ where $r \leq n$, $r \in N$, $n \in Z^+$

${}^n p_0 = 1$

For example:

$$\begin{aligned} \mathbf{a} \quad {}^6 p_3 &= 6 \times 5 \times 4 \times \frac{3 \times 2 \times 1}{3 \times 2 \times 1} = \frac{\underline{\underline{6}}}{\underline{\underline{6-3}}} & \mathbf{b} \quad {}^7 p_5 &= 7 \times 6 \times 5 \times 4 \times 3 \times \frac{2 \times 1}{2 \times 1} = \frac{\underline{\underline{7}}}{\underline{\underline{7-5}}} \\ {}^6 p_3 &= \frac{\underline{\underline{6}}}{\underline{\underline{6-3}}} \end{aligned}$$

from the previous , we deduce that:

${}^n p_r = \frac{\underline{\underline{n}}}{\underline{\underline{n-r}}}$ where $r \in N$, $n \in Z^+$, $r \leq n$

 Example

(3) Find the value for each of the following:

a ${}^7 p_4$ **b** ${}^4 p_4$ **c** ${}^4 p_3$

 Solution

a ${}^7 p_4 = 7 \times 6 \times 5 \times 4 = 840$

b ${}^4 p_4 = 4 \times 3 \times 2 \times 1 = 24$

c ${}^4 p_3 = 4 \times 3 \times 2 = 24$. What do you notice in the two phrases b and c?

 using calculator

Permutations are denoted by the symbol ${}^n p_r$ in the calculator and we use the buttons **Shift** **x** To calculate the value of ${}^5 p_2$ by the calculator, press the following buttons consecutively:

5 **Shift** **x** **2** **=**

The answer = 20

P Try to solve

3 Calculate the value of the following:

a ${}^5P_2 + {}^6P_3$

b $\frac{{}^5P_5}{{}^5P_4}$

Example

4 Find the number of the different ways, for 5 students to sit on 7 seats in one row.

Solution

We have 7 seats. Among the 7 seats, 5 should be selected each time

∴ Number of ways = ${}^7P_5 = 7 \times 6 \times 5 \times 4 \times 3 = 2520$

Use the calculator: 7 SHIFT × (npr) 5 =

P Try to solve

4 How many words can be formed from five different letters?

Example5 If ${}^7P_r = 840$, find the value of $\underline{r - 4}$ **Solution**

Start by dividing the number 840 by 7, then divide the quotient by 6, then divide the resulted quotient by 5 and so on till you reach number 1

∴ Number $840 = 7 \times 6 \times 5 \times 4 = {}^7P_4$

∴ ${}^7P_r = {}^7P_4$

∴ $r = 4$

∴ $\underline{r - 4} = \underline{0} = 1$

840	7
120	6
20	5
4	4
1	

P Try to solve5 If ${}^9P_{r-1} = 504$, find the value of $\underline{r + 1}$ **Critical thinking:** 1) Find the value of: 7P_7 , $\underline{7}$. What do you notice?

Exercises (2 - 2)

Choose the correct answer:

1 How many ways can a president and vice president be selected from a 12 - member committee?
 a 2 b 23 c 66 d 132

2 If ${}^5P_r = 60$, then r equals:
 a 4 b 3 c 2 d 5

3 If ${}^n P_3 = 120$, then the value of n equals:
 a 6 b 5 c 4 d 3

4 The number of ways to arrange the letters of the word factory equals:
 a 4 b 9 c 10 d 24

5 The number of ways to select a different two - digit number of the set of numbers {3, 4, 5, 6} equals:
 a 48 b 30 c 12 d 4

6 A phone number is made up of 8 places

9	c
---	---	-------	-------	-------	-------	-------	-------

 c should be a number of 3, 4, 5, 8 while the rest of the digits are made up of any unconditional digit. How many different telephone numbers are available?
 a 499999 b 4000000 c 4999999 d 10000000

7 How many ways can Hossam have a meal out of three meals (Kofta - chicken - fish) and a drink out of two drinks (Juice - soft drink)? Represent it using the tree diagram.

8 How many ways can a two - digit number be formed from the numbers 1 , 2 , 3 , 4?

9 How many ways can a different two - digit number be formed from the numbers 1 , 2 , 3 , 4?

10 How many ways can a different two - digit even number be formed from the numbers 1 , 2 , 3 , 4?

11 How many ways can a committee of a man and a woman be formed from 3 men and 4 women?

12 An Ice-cream shop offers three sizes (small - medium - large) and five flavors (strawberry , mango, lemon , milk, chocolate)
How many ways are available to buy an ice -cream cone?

13 From the set of the letters { a , b, c , d, e , f}, find
 a Number of ways to select a letter.
 b Number of ways to select two letters.

14 Find the value of the following:

a $17 \div 15$

b $3 \mid 2 - \mid 3$

c ${}^5p_3 \times \mid 2$

d ${}^3p_3 \times {}^2p_2$

e ${}^8p_1 + {}^8p_2$

f ${}^7p_0 + {}^7p_7$

15 Find the value of n which satisfies the following:

a $\mid n \mid = 24$

b $\frac{\mid n + 1 \mid}{\mid n - 1 \mid} = 42$

c ${}^{15}p_n = 2730$

d ${}^n p_0 + {}^n p_1 + {}^n p_2 = 50$

16 Find the value of n if:

a ${}^7p_n = 210$

b $n \mid 2n - 1 \mid = 12$

17 If ${}^n p_4 = 14 \times {}^{n-2} p_3$ find the value of n.

18 Find the number of ways to select a president, vice president and a secretary out of a ten- person committee.

19 How many ways can the physical education instructor choose three students (one after another) to participate in the teams of soccer , basketball and volleyball respectively from eight students?

20 Prove that: $\frac{\mid n + 2 \mid}{\mid n \mid} = {}^{n+2}p_2$

Combinations

We will learn

- The concept of combinations and simple applications on them.
- Pascal's triangle.

Key - term

- Combinations
- Elements
- Order
- Committee
- Subset

Materials

- Scientific calculator
- Computer

Tip

Combination can be written in the form of ${}^nC_r = \binom{n}{r}$

Introduction

Two clubs of a four - club set { a , b , c , d} are to be selected for a soccer match, then the possible permutations are:

(a, b), (a, c), (a, d), (b, a) , (b, c),
(b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c).

From the previous data, we notice that selecting (a, b) is different from selecting (b, a) and so on...

If we want to select from the previous disregarding the order, then all the possible choices are: {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}. and each choice of these choices is called " Combination"

Combinations

Definition

The number of combinations formed from r of objects chosen from n elements at the same time is nC_r where, $r \leq n$, $r \in N$, $n \in Z^+$

In the previous introduction , we find that:

the number of combinations of two elements taken from four elements is denoted by the symbol 4C_2 and is read as (4 c 2) or by the symbol $\binom{4}{2}$. In the introduction above, we notice that the number of ways of choosing

= 6 ways

i.e.: ${}^4C_2 = \frac{{}^4P_2}{[2]} = \frac{4 \times 3}{2 \times 1} = 6$, ${}^nC_r = \frac{{}^nP_r}{[r]}$

Example

1 Find the value of each of the following

a 7C_5

b 7C_2 (what do you notice)?

Solution

a ${}^7C_5 = \frac{{}^7P_5}{[5]} = \frac{7 \times 6 \times 5 \times 4 \times 3}{5 \times 4 \times 3 \times 2 \times 1} = 21$ b ${}^7C_2 = \frac{7 \times 6}{2 \times 1} = 21$

We notice that: ${}^7C_5 = {}^7C_2$ ($5 + 2 = 7$)

Important corollaries: ${}^nC_r = \frac{n!}{r!(n-r)!}$

$${}^nC_r = {}^nC_{n-r}$$

 Try to solve

1) Find the value of ${}^{12}C_9$; ${}^{17}C_{14}$ without using the calculator.

Activity

Using the calculator

The buttons **SHIFT** **+** can be used from left to right to write the symbol of combinations (nC_r)

1) Use the calculator to find the value of ${}^5C_4 + {}^7C_2$

 Solution

Press the following buttons consecutively

start \longrightarrow **5** **SHIFT** **+** **4** **+** **7** **SHIFT** **+** **2** **=**

The sum = 26

Example

2) If: ${}^{28}C_r = {}^{28}C_{2r-47}$

 Solution

$$\therefore {}^{28}C_r = {}^{28}C_{2r-47}$$

either : $r = 2r - 47$ i.e.: $r = 47$

it is greater than the value of n , so it is refused.

$$\text{or : } r + 2r - 47 = 28$$

$$\therefore 3r = 75$$

$$\therefore r = 25$$

 Try to solve

2) If ${}^{28}C_r = {}^{28}C_{2r-5}$, then find the value of r .

Ratio rule

$$\frac{{}^nC_r}{{}^nC_{r-1}} = \frac{n-r+1}{r}$$

Notice

$$(1) \frac{{}^{27}C_{14}}{{}^{27}C_{13}} = \frac{27-13}{14} = 1$$

$$(2) \frac{{}^{36}C_{25}}{{}^{36}C_{23}} = \frac{{}^{36}C_{25}}{36C_{24}} \times \frac{36C_{24}}{{}^{36}C_{23}}$$

Example

3) If ${}^nC_6 : {}^nC_5 = \frac{1}{3}$, find the value of $\underline{n-2}$

 Solution

$$\therefore \frac{{}^nC_6}{{}^nC_5} = \frac{1}{3}$$

$$\therefore \frac{n-6+1}{6} = \frac{1}{3}$$

$$\therefore \frac{n-5}{6} = \frac{1}{3}$$

$$\therefore n = 7$$

 Try to solve

3) Calculate the value of r if: ${}^7C_r : {}^7C_{r-1} = \frac{1}{3}$

Addition rule

(2)
$${}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r$$

 Example

4 If ${}^{n+1}P_{r+1} : {}^{n+1}C_{r+1} = 720 : 1$, ${}^nC_{r-2} + {}^nC_{r-3} = 56$, find the numerical value of n and r .

 Solution

$$\begin{aligned} {}^{n+1}P_{r+1} : {}^{n+1}C_{r+1} &= 720 : 1 \\ \underline{|r+1|} &= 720 & \underline{|r+1|} &= 16 & \therefore r &= 5 \\ \therefore {}^nC_{r-2} + {}^nC_{r-3} &= 56 & \therefore {}^nC_3 + {}^nC_2 &= 56 & \therefore {}^{n+1}C_3 &= 56 \\ \therefore {}^{n+1}C_3 &= {}^8C_3 & \therefore n+1 &= 8 & \therefore n &= 7 \end{aligned}$$

 Try to solve

4 If ${}^{13}C_r : {}^{13}C_{r+1} = 9 : 5$, ${}^nC_{r-2} + {}^nC_{r-1} = 3432$ find n, r

 Example

5 How many ways can a four - person team be chosen from a 9 - person set?

 Solution

So that the choice disregards the order, then each choice is called a combination.

$$\text{Number of choices} = {}^9C_4 = \frac{{}^9P_4}{\underline{4}} = 126$$

 Try to solve

5 7 people have participated in a chess game so that a game is held between each two players. How many matches are there?

Example Counting principle

6 How many ways can a committee of two men and a woman be selected out of 7 men and 5 women?

Solution

Number of ways to select 2 men out of 7 men = ${}^7C_2 = 21$

Number of ways to select a women out of 5 women = ${}^5C_1 = 5$

According to the counting principle, the number of ways to form the committee = $21 \times 5 = 105$ ways

Critical thinking: How many ways can a committee of 4 men and 3 women be selected out of 6 men and 5 women ?

Try to solve

6 How many ways can a five-member committee formed from 3 male students and 2 female students be selected out of a class contains 10 male students and 8 female students?

Activity
Pascal's triangle
Blaise pascal (1623 - 1662):

Blaise pascal is a french philosopher, mathematician and physicist. He had stated the theory of probabilities and designed a triangular array of numbers called pascal's triangle in calculating the probabilities. Furthermore, he had invented a calculator to perform the addition and multiplication operations

Check the opposite number triangle , then answer the following questions:

1- What do you notice about how numbers are written in this triangle?

2- Is there a relation among the number of elements of each row and the row directly next to it?

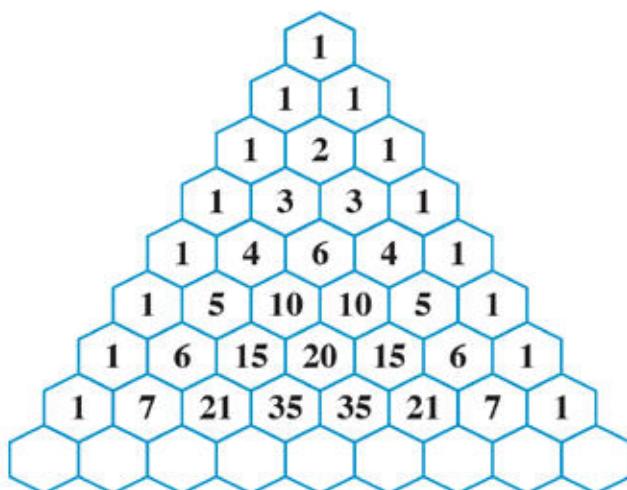
3- Is there a symmetry among the numbers existed on the two sides of the triangle?

After performing the activity, we can notice that:

➤ **First row:** represents ($n = 1$) of the elements taken off from $r = 0$ or $r = 1$

$$\text{So: } {}^1C_0 = 1, {}^1C_1 = 1$$

➤ **Second row:** represents ($n = 2$) of the elements taken off from $r = 0$ or $r = 1$ or $r = 2$ in each time.
then: ${}^2C_0 = 1, {}^2C_1 = 2, {}^2C_2 = 1$ and so on.



As we notice that:

- Each row starts with one because ${}^nC_0 = 1$, and ends in one because ${}^nC_n = 1$
- Each number in any row except for the first row equals the sum of the two numbers located above it in the row directly above it.
- **In the third row , we find:** 1 , 1 + 2 , 2 + 1 , 1
- **In the fourth row , we find:** 1 , 1 + 3 , 3 + 3 , 3 + 1 , 1 and so on.
- There is a symmetry about the number located at the middle of the row (if n is even)
- There is a symmetry about the two numbers located at the middle of the row (if n is odd)
- This coincides the previous relation ${}^nC_r = {}^nC_{n-r}$

Application on the activity:

Prove that: ${}^5C_0 + {}^5C_1 + {}^5C_2 + {}^5C_3 + {}^5C_4 + {}^5C_5 = 2^5$

Choose the correct answer :

- 1 The number of ways to choose 3 people out of five people equals.....
 a 15 b 10 c 20 d 35
- 2 The number of ways to answer 4 questions only out of a 6 - question exam equals.....
 a 30 b 15 c 24 d 10
- 3 The number of ways to choose a red ball and a white ball out of 5 red balls and 3 white balls equals.....
 a 15 b 8 c 60 d 2
- 4 If ${}^nC_5 : {}^nC_4 = 3:1$, Then n:
 a 7 b 9 c 17 d 19

Answer the following questions:

- 5 Calculate the value of 6C_3 , 9C_1 , ${}^{12}C_{11}$ and ${}^{100}C_0$
- 6 If ${}^nC_3 = 120$, find the value of ${}^nC_{n-9}$
- 7 If ${}^{n+1}C_4 = \frac{5}{2} {}^nC_3$, find the value of n.
- 8 If ${}^nC_3 = \frac{1}{3} 30n$, find the value of n.
- 9 How many ways can a five-people committee take the majority of a decision?

10 How many ways can a five - student activity committee formed from three male students and two female students out of a class contains 10 male students and 8 female students?

11 Write in terms of permutations each of:

a 8C_3 b ${}^{19}C_2$ c 5C_0 d ${}^xC_{x-y}$

12 Use the form nC_r to write each of:

a $\frac{8p_2}{12}$ b $\frac{9p_3}{13}$ c $\frac{10p_4}{14}$ d $\frac{8p_0}{10}$

13 The value of: $\frac{{}^{17}C_6 + {}^{17}C_5}{{}^{18}C_5}$

14 prove that: $\frac{{}^{25}C_4 + {}^{24}C_3}{{}^{24}C_3 + {}^{23}C_2} = \frac{58}{9}$

Complete:

- 1 The number of ways to form a different two-digit number of the set of the numbers 1, 2, 3, 4 equal.....
- 2 If you are asked to make a three-digit code does not include zero for an iron treasury, then the number of ways equals.....
- 3 If ${}^4C_0 + {}^4C_1 + {}^4C_2 + {}^4C_3 + {}^4C_4 = 2^n$, then $n =$
- 4 If $\lfloor n \rfloor = 1$, then $n =$

Choose the correct answer:

- 5 A man has wanted to buy a car of three models {a, b, c} and he wanted to select one of colors: {white - red - silver - black}. How many ways can this man choose a car?

a 7 b 12 c 14 d 24
- 6 How many ways can a different three-digit number be formed from the numbers 1, 3, 6, 7?

a 9 b 12 c 24 d 64
- 7 If $X = \{x : x \in \mathbb{N} \text{ and } 1 \leq x \leq 5\}$ and $Y = \{(a, b) : a, b \in X \text{ and } a \neq b\}$. How many elements are there in Y ?

a 7 b 10 c 20 d 25
- 8 ${}^{12}C_4 + {}^{12}C_3$ equals

a 715 b 710 c 716 d 720
- 9 If ${}^n p_r = 336$, ${}^n C_r = 56$ then n, r are

a (3, 2) b (8, 3) c (7, 4) d (7, 3)
- 10 How many ways are there to invite a friend or more for dinner if a person has 8 friends?

a 250 b 200 c 255 d 256
- 11 If ${}^n C_{10} = {}^n C_{14}$, then ${}^{25}C_n$ equals.

a 24 b 25 c 1 d 49
- 12 Calculate the value of each:

a 5C_5 b $\lfloor 6 \rfloor$ c ${}^{23}p_1$
 d ${}^{50}C_{49}$ e $\frac{13}{14}$ f 4p_4

13) What is the value of $\lfloor n - 5 \rfloor$, if ${}^2n-1C_3 = 84$?

14) What is the value of ${}^{2r}C_4$, if ${}^8P_{r+1} = 336$?

15) If ${}^{n-m}P_3 = 210$, ${}^{n+m}C_4 = 715$, find the value of m and n.

16) How many ways can 7 students be selected from 10 students to take a historical trip?

17) If 3 students are selected from (n) number of students to attend a seminar so that the number of ways of choosing is 10 ways, find the number of students.

18) How many ways can a committee of a man and two women be selected from 7 men and 5 women?

19) It is wanted to choose a teacher out of 4 teachers to train the Olympics students in mathematics and another teacher to prepare the test, find the number of ways of choosing.

20) The number of the premier league soccer teams is 12 teams. If each team plays two matches with each team of other teams, find the total number of the premier league matches.

21) Find the solution set of the following equations:

a) $\frac{\lfloor n + 3 \rfloor}{\lfloor n + 1 \rfloor} = 42$

b) $12 \times \lfloor n \rfloor = \lfloor n + 2 \rfloor$

c) $\lfloor n - 4 \rfloor = 120$

d) $\lfloor n - 5 \rfloor = 1$

e) ${}^nC_3 = 84$

f) ${}^{12}C_r = {}^{12}C_{2r+3}$

Unit Three

Calculus

Unit preface

Isaac Newton (1642 - 1727) had invented calculus and Leibeniz (1646 - 1716) had competed him independently. The result was that the differentiation or derivation had been originated to be related to the problem of finding the tangents of curves and to calculate the maximal and minimal values of the functions of pure mathematics or functions modeling social and economical problems . For integration, Newton had considered that it is a reverse operation of differentiation while Leibeniz considered it a limit of summations. The letter S to express integration from summation is related to him, then the letter S is changed into the letter known currently \int which is closer to S. Calculus has been developed by many scientists such as Berkeley, Lagrange , Laplace, Gauss and weierstrass and the process of inventing the analytic geometry has helped to develop calculus.

Unit objectives

By the end of the unit and doing its activities , the student should be able to:

- Identify the concept of the function of variation, average rate of change and rate of change.
- Deduce the first derivative of the function.
- Identify the geometric interpretation of the first derivative (slope of tangent) .
- Investigate the differentiability of the function (right derivative- left derivative)
- Deduce the relation between differentiation and continuity.
- Determine some differentiation rules
 - ▶ Derivative of the constant function.
 - ▶ Derivative of the function $f: f(x) = x^n$
 - ▶ Derivative of the function $f : f(x) = x$
 - ▶ Derivative of the function $f: f(x) = a x^n$
 - ▶ Derivative of the sum or the difference between two functions.
- ▶ Derivative of the composite function - chain rule.
- ▶ Derivative of the function $y = (f(x))^n$
- ▶ Derivative of the trigonometric functions.
- Use the derivatives in geometric applications such as finding the equations of the tangent and the normal of a curve at a point on it.
- Identify the concept of integration - antiderivative.
- Identify and deduce the following integration rules:
 - ▶ $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ where $n \neq -1$
 - ▶ $\int a f(x) dx = a \int f(x) dx$ where a is a constant
 - ▶ $\int [f(x) \pm r(x)] dx = \int f(x) dx \pm \int r(x) dx$
 - ▶ $\int (a.x + b)^n dx = \frac{1}{n+1} (a.x + b)^{n+1} + C$ where $n \neq -1$
 - ▶ $\int \sin a.x dx = -\frac{1}{a} \cos a.x + C$ where a is a constant
 - ▶ $\int \cos a.x dx = \frac{1}{a} \sin a.x + C$ where a is a constant

Key terms

- ❖ Variation
- ❖ Average Rate of Change
- ❖ Rate of Change
- ❖ First Derivative
- ❖ Left Derivative
- ❖ Right Derivative
- ❖ Differentiation
- ❖ Differentiable Functions
- ❖ Product
- ❖ Quotient
- ❖ Chain Rule
- ❖ Trigonometric Functions
- ❖ Integration
- ❖ Antiderivative

Materials

Scientific calculator - Computer - Graphical program .

Lessons of the unit

- Lesson (3 - 1): Rate of change.
- Lesson (3 - 2): Differentiation.
- Lesson (3 - 3): Rules of differentiation.
- Lesson (3 - 4): Derivatives of trigonometric functions.
- Lesson (3 - 5): Applications on the derivative.
- Lesson (3 - 6): Integration.

Unit planning guide

Calculus

Differentiation

function of variation

average rate of change

rate of change

first derivative of the function

geometric interpretation of the first derivative

concept of integration

int

egration

rules of integration

Differentiability

slope of tangent

right derivative

left derivative

The relation between differentiation and continuity

Rules of differentiation

Geometric applications

equation of tangent

equation of normal

Unit three

3 - 1

Rate of Change

You will learn

- The concept of the function of variation.
- The concept of the average rate of change.
- The concept of the rate of change.

Key terms

- Function of Variation
- Average Rate of Change
- Rate of Change

Materials

- Scientific calculator

Think and discuss

If a table tennis ball and football fall down from the same height and at the same times disregarding the effect of air resistance, which ball will hit the ground first ? Explain.

Differentiation interests in learning the change occurring in a variable as a result of the change of another variable. The change occurred in the time of the ball motion ($t_2 - t_1$) leads to a corresponding change in its velocity ($v_2 - v_1$), so the average rate of change of velocity can be compared in regard to the time unit of the two balls by calculating the rate $\frac{v_2 - v_1}{t_2 - t_1}$

Learn

Function of Variation

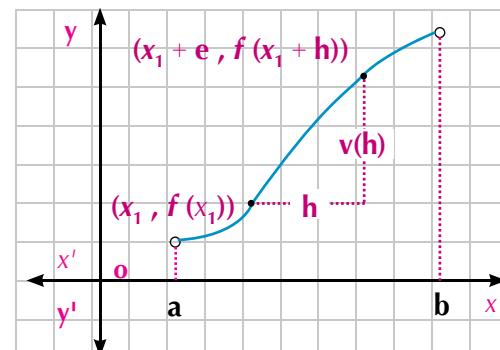
If $f : [a, b] \rightarrow \mathbb{R}$ where $y = f(x)$, then any change in the value of x from x_1 to x_2 in the domain of f corresponds a change in the value of y from $f(x_1)$ to $f(x_2)$, thus:

The amount of change in $x = \Delta x$ (read as Delta x) $= x_2 - x_1$,

The amount of change in $y = \Delta y = f(x_2) - f(x_1)$

Let $(x_1, f(x_1))$ be a point on the curve of the function f , then each change in its x coordinate from x_1 to $x_2 = x_1 + h$ where $x_1 + h \in [a, b]$ and $h \neq 0$. A corresponding change occurs in its y coordinates and it can be identified by the relation: $V(h) = f(x_1 + h) - f(x_1)$

the function V is called the function of variation in f when $x = x_1$



Notice: Both symbols Δx or h represent the change in x

Example

1 If $f(x) = 3x^2 + x - 2$

and x varies from 2 to $2 + h$, find the function of variation V , then calculate the change in f when:

a $h = 0,3$

b $h = -0,1$

Solution

$$\because f(x) = 3x^2 + x - 2, x \text{ varies from } 2 \text{ to } 2 + h$$

$$\therefore x_1 = 2, f(2) = 3 \times 4 + 2 - 2 = 12, \text{ then:}$$

$$\begin{aligned} f(2 + h) &= 3(2 + h)^2 + (2 + h) - 2 = 12 + 12h + 3h^2 + 2 + h - 2 \\ &= 3h^2 + 13h + 12 \end{aligned}$$

$$\begin{aligned} V(h) &= f(2 + h) - f(2) \\ &= (3h^2 + 13h + 12) - 12 = 3h^2 + 13h \end{aligned}$$

a when $h = 0,3$

$$\begin{aligned} V(0,3) &= 3(0,3)^2 + 13 \times 0,3 \\ &= 4,17 \end{aligned}$$

b when $h = -0,1$

$$\begin{aligned} V(-0,1) &= 3(-0,1)^2 + 13(-0,1) \\ &= -1,27 \end{aligned}$$

Try to solve

1 If $f(x) = x^2 - x + 1$, find the function of variation V when $x = 3$, then calculate:

a $V(0,2)$

b $V(-0,3)$

Learn
Average Rate of Change Function

By dividing the function of variation v by h where $h \neq 0$, we get a new function called the average rate of change function in f when $x = x_1$ where:

$$A(h) = \frac{v(h)}{h} = \frac{f(x_1 + h) - f(x_1)}{h} \quad \text{or} \quad \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Example

2 If $f: [0, \infty[\rightarrow \mathbb{R}$ where $f(x) = x^2 + 1$, find:

a The average rate of change function in f when $x = 2$, then calculate $A(0,3)$

b The average rate of change in f when x varies from 3 to 4

Solution

a $f(x_1) = f(2) = (2)^2 + 1 = 5, \quad f(x_1 + h) = f(2 + h)$

$$\therefore f(2 + h) = (2 + h)^2 + 1 = h^2 + 4h + 5$$

$$\therefore A(h) = \frac{f(x_1 + h) - f(x_1)}{h}$$

$$\therefore A(h) = \frac{h^2 + 4h + 5 - 5}{h} = h + 4 \quad \text{then} \quad A(0.3) = 4.3$$

b when x varies from 3 to 4 then $x_1 = 3, x_2 = 4$

and $f(3) = 9 + 1 = 10, f(4) = 16 + 1 = 17$

$$\text{Average rate of change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{17 - 10}{4 - 3} = 7$$

Try to solve

2 If $f(x) = x^2 + 3x - 1$, find:

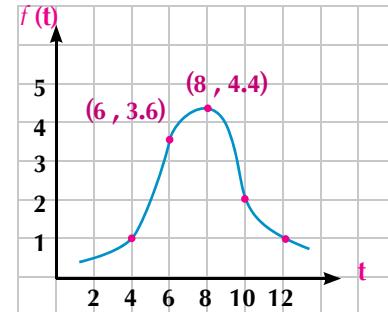
a The average rate of change function when $x = 2$, then find $a(0.2)$
b The average rate of change when x varies from 4.5 to 3

Example

3 The opposite figure shows the curve of $r = f(t)$ where r is the total sales of a computer store approximated in millions L.E and t is the time in months.

From the graph, find the average rate of change in the total sales when the time varies from:

a $t = 4$ to $t = 8$ **b** $t = 8$ to $t = 10$



Solution

a From the graph: $f(8) = 4.4, f(4) = 1$

$$\text{the average rate of change in } f = \frac{f(8) - f(4)}{8 - 4} = \frac{4.4 - 1}{4} = 0.85 \text{ of million L.E / month}$$

I.e. the average of the total sales increases 0.85 of million L.E monthly during this period.

b From the graph: $f(10) = 2$ and $f(8) = 4.4$

$$\text{the average rate of change in } f = \frac{f(10) - f(8)}{10 - 8} = \frac{2 - 4.4}{2} = -1.2 \text{ million L.E / month}$$

I.e. the average of the total sales decreases 1.2 million L.E monthly during this period.

Try to solve

3 Use the graph in example (3) to find the average rate of change in the total sales when time varies from :

a $t = 4$ to $t = 6$

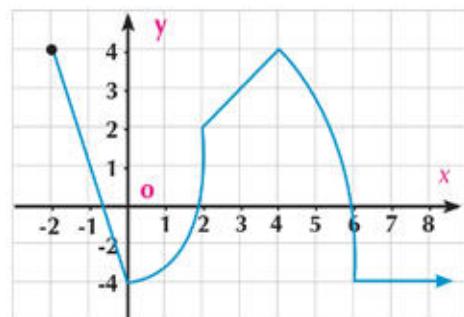
b $t = 6$ to $t = 10$

c $t = 4$ to $t = 12$

Critical thinking :

The opposite figure shows the curve of the function f where $y = f(x)$. Determine the intervals in which the average rate of change in f is constant. Explain

Learn

**Rate of Change Function**

If $f: [a, b] \rightarrow \mathbb{R}$ where $y = f(x)$ and $x_1, x_1 + h \in [a, b]$, then :

the rate of change function in f when $x_1 = \lim_{h \rightarrow 0} \frac{f(x_1 + h) - f(x_1)}{h} = \lim_{h \rightarrow 0} A(h)$ in a condition the limit should be existed.

Example

4) Find the rate of change function in f when $x = x_1$ for each of the following , then find this rate at the given values of x .

$$f(x) = 3x^2 + 2 \quad \text{when } x = 2$$

Solution

$$\because f(x) = 3x^2 + 2 \quad \therefore \text{when } x = x_1 \quad \text{then} \quad f(x_1) = 3x_1^2 + 2,$$

$$f(x_1 + h)^2 = 3(x_1 + h)^2 + 2 = 3x_1^2 + 6x_1h + 3h^2 + 2$$

$$\begin{aligned} \text{The rate of change function in } f &= \lim_{h \rightarrow 0} \frac{f(x_1 + h) - f(x_1)}{h} \\ &= \lim_{h \rightarrow 0} \frac{6x_1h + 3h^2}{h} = \lim_{h \rightarrow 0} (6x_1 + 3h) = 6x_1 \end{aligned}$$

$$\text{When } x = 2 \quad \therefore x_1 = 2 \quad \text{and the rate of change in } f = 6 \times 2 = 12$$

Life applications**Example**

5) A piece of stone has fallen in calm water, a circular wave has been formed and expanded regularly so that the wave has kept its circular shape. Find the rate of change in its surface area with respect to its radius length when the radius length is 3.5 ($\pi = \frac{22}{7}$).

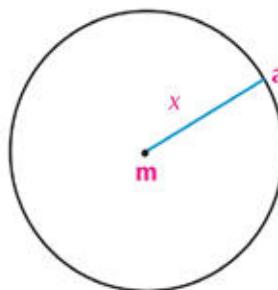
 Solution
Modelling the problem:

Let the radius length of the wave = x cm

\therefore Area of the circle $a = \pi x^2$ cm 2

Then $a = f(x) = \pi x^2$

When x varies from x_1 to $x_1 + h$



$$\begin{aligned} \text{Then rate of change function in } a &= \lim_{h \rightarrow 0} \frac{f(x_1 + h) - f(x_1)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\pi(x_1 + h)^2 - \pi x_1^2}{h} \\ &= \pi \lim_{h \rightarrow 0} \frac{(x_1 + h)^2 - x_1^2}{h} = 2\pi x_1 \end{aligned}$$

When $x = x_1 = 3.5 \quad \therefore$ the rate of change in $a = 2 \times \frac{22}{7} \times 3.5 = 22$

 Try to solve

4) A squared lamina expands regularly keeping its shape. Calculate the average rate of change in its surface area when its side length varies from 3cm to 3.4cm, then calculate the rate of change in its surface area when its side length = 5 cm.

 Example

6) In a chemical reaction whose a final product is substance a , it's found that the product after t second is given by the relation $y = t^3$ mg. Find the instantaneous rate to produce the substance a when $t = 2$ seconds .

 Solution

Let $y = f(t) = t^3$, then :

The instantaneous rate to produce substance a is the same rate of change in f .

$$\begin{aligned} \text{When } t = t_1, \text{ then the rate of change function in } f &= \lim_{h \rightarrow 0} \frac{f(t + h) - f(t)}{h} \\ &= \lim_{h \rightarrow 0} \frac{(t + h)^3 - t^3}{h} = 3t^2 \end{aligned}$$

when $t = t_1 = 2$ seconds

\therefore the instantaneous rate to produce substance $a = 3(2)^2 = 12$ mg /sec

 Try to solve

5) The size of a bacterial culture at any time t (measured in minute) is given by the relation $f(t) = 2t^3 + 100$ mg, find the rate of the instantaneous growth of the function f when $t = 5$

Exercises 3 - 1

Choose the correct answer :

1 If the average rate of change in $f = 2.4$ when x varies from 3 to 3.2, then the change in f equals

a 0.32 b 0.48 c 3.6 d 7.2

2 If the average rate of change in $f = 5$ when x varies from 2 to 4 and $f(2) = 6$, then $f(4)$ equals

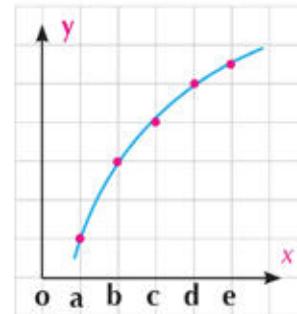
a - 4 b 7 c 8 d 16

3 The average rate of change in the cube volume when its edge length varies from 5cm to 7cm equals

a 125 b 343 c 218 d 109

4 The opposite figure shows the curve of the function f where $y = f(x)$. In which of the following intervals the average rate of change in f is the greatest?

a $[a, b]$ b $[b, c]$
 c $[c, d]$ d $[a, e]$

**Answer each of the following:**

5 If $f(x) = x^2 + 2x - 1$, find the variation in f when

a x varies from 2 to 2.1 b $x = -2$ and $h = 1$

6 Find the average rate of change function in f when $x = x_1$, then deduce the rate of change of f at the shown values of x_1 in the following :

$$f(x) = 2x^3, \quad x_1 = 2$$

7 **Areas:** A squared lamina shrinks by cooling and maintaining its square shape. Calculate the rate of change in the surface of lamina with respect to its side length when the side length is 8cm.

8 **Volumes:** A metal sphere expands by heating and maintaining its spherical shape. Find the rate of change in the sphere volume with respect to its radius length when the radius length is 7 cm.

Geometry:

9 A sphere shaped soap bubble expands regularly to maintain its spherical shape. Calculate the average rate of change in its spherical surface area when its radius length varies from 0.5 cm to 0.6cm, known that the surface area of the sphere equals $4\pi r^2$ where r is the sphere radius length .

10 A triangular lamina whose base length equals twice its corresponding height. it expands by heating maintaining its shape . Find the average rate of change in its area if its height varies from 8 cm to 8.4 cm.

Unit three

Differentiation

3 - 2

You will learn

- The first derivative of the function.
- The left derivative of the function.
- The right derivative of the function.
- The differentiability at a point.
- The relation between differentiation and continuity

Key terms

- First Derivative
- Left Derivative
- Right Derivative
- Differentiation
- Differentiable Function

Materials

- Scientific calculator
- Graphical programs

Think and discuss

1 The opposite figure (1) shows the curve of $f : [a, b] \rightarrow \mathbb{R}$ where $y = f(x)$, \overleftrightarrow{CD} intersects it at the two points C $(x_1, f(x_1))$, D $(x_1 + h, f(x_1 + h))$.

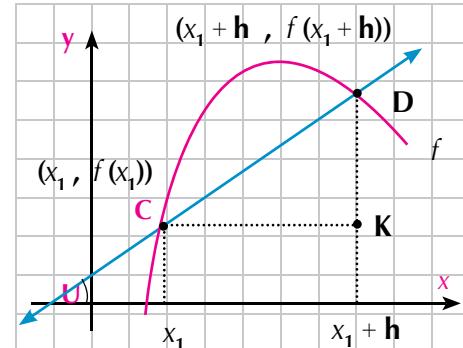


fig. (1)

Find the slope of the secant \overleftrightarrow{CD} .

2 let x varies from x_1 to $x_1 + h$, compare the average rate of change function in f , and the slope of the secant \overleftrightarrow{CD} . Is the next relation true?

$$\text{The slope of the secant } \overleftrightarrow{CD} = \tan U = \frac{f(x_1 + h) - f(x_1)}{h} = A(h)$$

3 If C $(x_1, f(x_1))$ is a constant point on the curve of the function f and point D moves on the curve so that it gets near to point C to let \overleftrightarrow{CD} take the position \overleftrightarrow{CN} and become a tangent to the curve at C. i.e. $h \rightarrow 0$

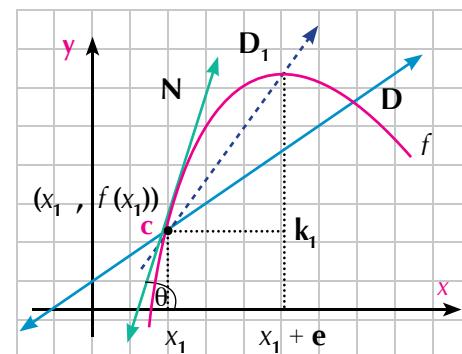


fig. (2)

Find the slope of the tangent to the curve of f at C

Notice :

The slope of the tangent at C = $\tan \theta = \lim_{h \rightarrow 0} \frac{f(x_1 + h) - f(x_1)}{h}$, if found

i.e. :

the slope of the tangent to the curve of the function f where $y = f(x)$ at point $(x_1, f(x_1))$ equals the rate of change in f when $x = x_1$

Example

1 Find the slope of the tangent to the curve of the function f where $f(x) = 3x^2 - 5$ at point A (2, 7), then find the measure of the positive angle which the tangent makes with the positive direction of x-axis at point A to the nearest minute .

Solution

$$\because f(2) = 3(2)^2 - 5 = 7 \quad \therefore \text{point A (2, 7) belongs to the curve of } f$$

The slope of the tangent at $(x = 2)$ = the rate of change in f when $(x = 2)$

$$= \lim_{h \rightarrow 0} \frac{f(2+h) - f(2)}{h}$$

$$\therefore \text{The slope of the tangent} = \lim_{h \rightarrow 0} \frac{3(2+h)^2 - 5 - 7}{h} = \lim_{h \rightarrow 0} \frac{12h + 3h^2}{h}$$

$$= \lim_{h \rightarrow 0} (12 + 3h) = 12$$

Then $\tan \theta = 12$

$$\therefore \theta = \tan^{-1}(12) \simeq 85^\circ 14'$$

Try to solve

1 Find the slope of the tangent to the curve of the function f where $f(x) = x^3 - 4$ at point A (1, - 3), then find the measure of the positive angle which the tangent makes with the positive direction of x-axis at point A to the nearest minute.

Learn
The Derivative Function

For each value of the variable x in the domain of f is corresponded by a unique value to the rate of change in f , thus , the rate of change is a function in the variable x and called the "derivative function" or the first derivative of the function or first differential coefficient.

Definition

If $f: [a, b] \rightarrow \mathbb{R}$ and $x \in [a, b]$, then **the derivative function f'** :

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \text{ in a condition that this limit is existed.}$$

Symbols of the derivative function :

If $y = f(x)$, then the first derivative of the function f is denoted by

y' or f' and read as " derivative of y " or derivative of f "

$\frac{dy}{dx}$ read as " dy by dx " or " derivative of y with respect to x "

Notice that the slope of the tangent to the curve of $y = f(x)$ at point $(x_1, f(x_1))$ is $f'(x_1)$

Example

2 Find the derivative function of the function f where $f(x) = x^2 - x + 1$ using the definition of the derivative, then find the slope of the tangent at the point $(-2, 7)$

Solution

$$\because f(x) = x^2 - x + 1$$

$$\therefore f(x+h) = (x+h)^2 - (x+h) + 1 = x^2 + 2xh + h^2 - x - h + 1,$$

$$f(x+h) - f(x) = (2x + h - 1)h$$

$$\therefore f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$$

$$\therefore f'(x) = \lim_{h \rightarrow 0} \frac{(2x + h - 1)h}{h}$$

$$f'(x) = \lim_{h \rightarrow 0} (2x + h - 1) \quad f'(x) = 2x - 1$$

$$\therefore f(-2) = (-2)^2 - (-2) + 1 = 7 \quad \therefore \text{point } (-2, 7) \text{ lies on the curve of } f$$

the slope of the tangent at point $(-2, 7) = f'(-2) = 2(-2) - 1 = -5$

Try to solve

2 If $f(x) = 3x^2 + 4x + 7$, find the derivative of the function f using the definition of the derivative, then find the slope of the tangent at the point $(-1, 6)$

Learn
Differentiability of a function at a Point

It is said that the function f is differentiable when $x = a$ (where a belongs to the domain of the function) if and only if $f'(a)$ is existed where $f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$

If a derivative is found for the function f at each point belongs to the interval $[c, d]$, we say that the function is differentiable in this interval.

In example (2) : we find that for each $x \in \mathbb{R}$ there is a derivative to the function f where $f'(x) = 2x - 1$ so the polynomial function is differentiable on \mathbb{R}

Example

3 Prove that $f(x) = \frac{x-1}{x+1}$ is differentiable when $x = 2$

Solution

$$\because \text{domain of } f = \mathbb{R} - \{-1\} \therefore f \text{ is defined when } x = 2, f(2) = \frac{1}{3}$$

$$\begin{aligned} f'(2) &= \lim_{h \rightarrow 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \rightarrow 0} \frac{\frac{2+h-1}{2+h+1} - \frac{1}{3}}{h} \\ &= \lim_{h \rightarrow 0} \frac{3+3h-3-h}{3h(3+h)} = \lim_{h \rightarrow 0} \frac{2h}{3h(3+h)} = \frac{2}{9} \in \mathbb{R} \end{aligned}$$

$\therefore f$ is differentiable when $x = 2$

Try to solve

3) Prove that $f(x) = x^2 - x + 1$ is differentiable when $x = 1$

Right and Left Derivatives

If the function f is defined when $x = a$ (where a belongs to the domain of the function), and the function rule on the right of a differs from its rule on the left of a , we discuss the differentiability when $x = a$ by finding the right derivative of the function which is denoted by the symbol $f'(a^+)$ and the left derivative denoted by $f'(a^-)$ where :

The right derivative $f'(a^+) = \lim_{h \rightarrow 0^+} \frac{f(a+h) - f(a)}{h}$, **left derivative** $f'(a^-) = \lim_{h \rightarrow 0^-} \frac{f(a+h) - f(a)}{h}$

The function is differentiable at a if and only if $f'(a^+) = f'(a^-)$, and the derivative of the function is denoted by the symbol $f'(a)$

Example

4) Show that the function f where $f(x) = \begin{cases} x^2 & \text{when } x \leq 2 \\ x + 2 & \text{when } x < 2 \end{cases}$ is not- differentiable when $x = 2$

Solution

\therefore Domain of $f = \mathbb{R}$

\therefore The function is defined when $x = 2$ and $f(2) = (2)^2 = 4$

$$\begin{aligned} \therefore f'(2^-) &= \lim_{h \rightarrow 0^-} \frac{f(2+h) - f(2)}{h} & f'(2^+) &= \lim_{h \rightarrow 0^+} \frac{f(2+h) - f(2)}{h} \\ &= \lim_{h \rightarrow 0} \frac{(2+h)^2 - 4}{h} & &= \lim_{h \rightarrow 0} \frac{(2+h+2) - 4}{h} \\ &= \lim_{h \rightarrow 0} \frac{4h+h^2}{h} & &= \lim_{h \rightarrow 0} \frac{h}{h} = 1 \\ & \therefore f^-(2^-) = 4 & \therefore f^-(2^+) = 1 \end{aligned}$$

$\therefore f'(2^+) \neq f'(2^-) \therefore f'(2)$ is not existed. I.e. the function is not-differentiable when $x = 2$

Try to solve

4) Discuss the differentiability of the function f when $x = 2$ where $f(x) = \begin{cases} x^2 - 5 & \text{when } x < 2 \\ 4x - 9 & \text{when } x \geq 2 \end{cases}$

Critical thinking :

- Discuss the continuity of the two functions in Example (4) and try to solve (4) and deduce the relation between the differentiability of the function at a point in its domain and its continuity at the same point.
- Is the function f where $f(x) = |x - 2|$ differentiable when $x = 2$?

Differentiation and Continuity

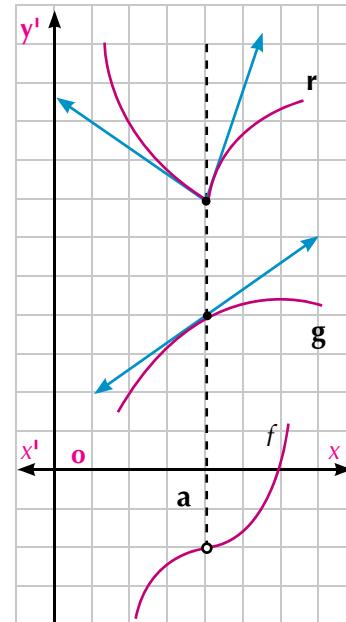
Definition

- If the function f where $y=f(x)$ is differentiable when $x=a$, then it is continuous at this point.

The opposite figure shows that:

- 1 - The continuity of a function at a point does not necessarily mean it is differentiable at the same point as in the two functions r and g .
- 2 - If the function is discontinuous when $x=a$, then the function is not-differentiable when $x=a$ as in the function f .

Important note: when discussing the differentiability of a function at a point in its domain, it is favourable to discuss its continuity at this point first. If it is continuous, we discuss the differentiation and if it is discontinuous, then the function is not-differentiable



Example

5) Discuss the differentiability of the function f at $x=3$ where $f(x) = \begin{cases} 2x-1 & \text{when } x < 3 \\ 7-x & \text{when } x \geq 3 \end{cases}$

Solution

Discuss the continuity at $x=3$

$$(1) f(3) = 7 - 3 = 4$$

$$\begin{array}{c} f(x) = 2x-1 \quad (4) \quad f(x) = 7-x \\ \hline \end{array} \quad \begin{array}{c} -\infty \quad 3 \quad \infty \\ \hline \end{array}$$

$$(2) f(3^-) = \lim_{x \rightarrow 3^-} (2x-1) = 5, \quad f(3^+) = \lim_{x \rightarrow 3^+} (7-x) = 4$$

$$\therefore f(3^-) \neq f(3^+) \quad \therefore \lim_{x \rightarrow 3} f(x) \text{ is not existed and } f \text{ is discontinuous at } x=3$$

$\therefore f$ is discontinuous at $x=3$

$\therefore f$ is not-differentiable at $x=3$

Try to solve

5) Discuss the differentiability of the function f where $f(x) = \begin{cases} x^2 + 2 & \text{when } x \geq 1 \\ 2x + 1 & \text{when } x < 1 \end{cases}$

6) If $f(x) = \begin{cases} x^2 + a & \text{when } x \leq 2 \\ ax + b & \text{when } x > 2 \end{cases}$ is differentiable at $x=2$ then $a+b$ equals:

a) 4

b) -4

c) -8

d) 8

Exercises (3 - 2)

Answer the following:

1) Using the definition of derivative, find the derivative of the function f where $f(x) = x^2 - 5$ when $x = 3$ and show the geometric meaning of the derivative of the function when $x = 3$.

2) Using the definition of derivative, find the derivative of the function f where $f(x) = 1 - 5x - 3x^2$ at point $(-1, 3)$, then find the measure of the positive angle which this tangent makes with the positive direction of x -axis to the nearest minute.

3) Find the derivative function for each of the following functions using the definition:

a) $f(x) = \sqrt{3x + 1}$

b) $f(x) = \frac{1}{x}$

4) Discuss the differentiability of the function f where $f(x) = \begin{cases} 4 - x^2 & \text{when } x \leq 1 \\ 2x + 1 & \text{when } x > 1 \end{cases}$ at $x = 1$

5) Find the value of the constant a if the function f is differentiable at $x = 2$ where

$$f(x) = \begin{cases} 2x + 3 & \text{when } x < 2 \\ ax^2 + 8x - 1 & \text{when } x \geq 2 \end{cases}$$

6) If the function f where $f(x) = \begin{cases} ax^2 + 1 & \text{when } x \geq 2 \\ 4x - 3 & \text{when } x < 2 \end{cases}$ is continuous at $x = 2$, find the

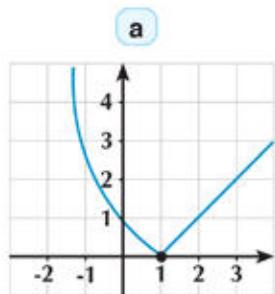
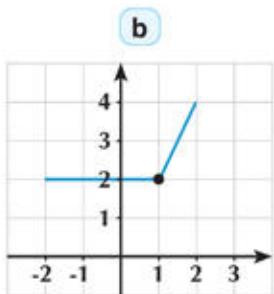
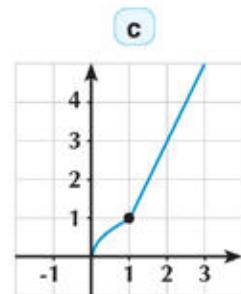
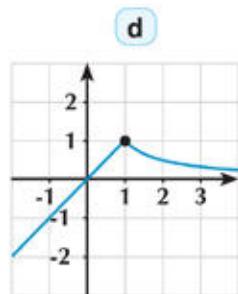
value of the constant a , then discuss the differentiability of the function when $x = 2$

7) If $f(x) = ax^2 + b$ where a and b are two constants, find :

a) The first derivative of the function f at any point (x, y) .

b) The two values of a and b if the slope of the tangent to the curve of the function at point $(2, -3)$ lying on it equals 12.

8) Compare the right derivative and the left derivative for each of the following functions and prove that each of them is not-differentiable at point $x = 1$.



Unit three

3 - 3

Rules of Differentiation

Explore

You will learn

- Derivative of the constant function.
- Derivative of $f(x) = x^n$
- Derivative of $f(x) = x$
- Derivative of $f(x) = ax^n$
- Derivative of the sum and difference of two functions.
- Derivative of the product of two functions.
- Derivative of the quotient of two functions.
- Derivative of the composite function (chain rule).
- Derivative of $y = (f(x))^n$.

1 - Find by using the definition of the first derivative of the function the derivative for each of :

$$f(x) = x^3 \quad f(x) = x^5$$

2 - Can you discover the derivative of $f(x) = x^7$ without using the definition?

3 - Can you deduce a rule for the derivative of the function f where $f(x) = x^n$?

Derivative of a Function

1 - Derivative of the constant function

If $y = c$ where: $c \in \mathbb{R}$ then: $\frac{dy}{dx} = 0$

Notice :

$$y = f(x) = c, \quad f(x + h) = c$$

$$\therefore \frac{dy}{dx} = f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

$$\therefore \frac{dy}{dx} = f'(x) = \lim_{h \rightarrow 0} \frac{c - c}{h} = \text{zero} \quad (h \neq 0)$$

2 - Derivative of the function $f(x) = x^n$

If $y = x^n$ where: $n \in \mathbb{R}$ then: $\frac{dy}{dx} = n x^{n-1}$

If $y = x$ then: $\frac{dy}{dx} = 1$

If $y = a x^n$ where: $a, n \in \mathbb{R}$ then: $\frac{dy}{dx} = a n x^{n-1}$

Example

1 Find $\frac{dy}{dx}$ in each of the following:

a) $y = -3$

b) $y = x^4$

c) $y = 5x$

d) $y = \frac{3}{x^2}$

e) $y = \sqrt{x^3}$

a) $\because y = -3 \quad \therefore \frac{dy}{dx} = 0$ b) $\because y = x^4 \quad \therefore \frac{dy}{dx} = 4 x^3$

c $\because y = 5x \quad \therefore \frac{dy}{dx} = 5$

d $\because y = \frac{3}{x^2} = 3x^{-2} \quad \therefore \frac{dy}{dx} = -6x^{-3}$

e $\because y = \sqrt{x^3} = x^{\frac{3}{2}} \quad \therefore \frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x} \text{ where } x \geq 0$

 Try to solve

1 Find $\frac{dy}{dx}$ in each of the following:

a $y = -\sqrt{2}$ **b** $y = \frac{4}{3}\pi x^3$ **c** $y = \frac{-4}{x^5}$ **d** $y = \sqrt[3]{x^5}$

Derivative of the sum or difference between two functions

If z and g are two differentiable functions with respect to the variable x , then $z \pm g$ is also differentiable with respect to x and $\frac{d}{dx}(z \pm g) = \frac{dz}{dx} \pm \frac{dg}{dx}$, and in general :

If f_1, f_2, \dots, f_n are differentiable functions with respect to the variable x then:

$$\frac{d}{dx}(f_1 \pm f_2 \pm f_3 \pm \dots \pm f_n)(x) = f_1'(x) \pm f_2'(x) \pm f_3'(x) \pm \dots \pm f_n'(x)$$

 Example

2 Find $\frac{dy}{dx}$ in each of the following:

a $y = 2x^6 + x^{-9}$ **b** $y = \frac{\sqrt{x} - 2x}{\sqrt{x}}$

 Solution

$$\begin{aligned} \text{a} \quad & \because y = 2x^6 + x^{-9} & \text{b} \quad & \because y = \frac{\sqrt{x} - 2x}{\sqrt{x}} \\ & \therefore \frac{dy}{dx} = 12x^5 - 9x^{-10} & & = 1 - 2\sqrt{x} = 1 - 2x^{\frac{1}{2}} \\ & & & \therefore \frac{dy}{dx} = 0 - 2 \times \frac{1}{2}x^{1-\frac{1}{2}} = -x^{-\frac{1}{2}} \end{aligned}$$

 Try to solve

2 Find $\frac{dy}{dx}$ if:

a $y = 3x^8 - 2x^5 + 6x + 1$ **b** $y = \frac{5}{x} + x\sqrt{x} + \sqrt{3}x - 4$

The derivative of the product of two functions:

if z and g are two differentiable functions with respect to the variable x , then the function $(z \cdot g)$

is also differentiable with respect to the variable x and $\frac{d}{dx}(z \cdot g) = z \frac{dg}{dx} + g \cdot \frac{dz}{dx}$

 Example

3) Find $\frac{dy}{dx}$ if $y = (x^2 + 1)(x^3 + 3)$, then find $\frac{dy}{dx}$ when $x = -1$

 Solution

$$\because y = (x^2 + 1)(x^3 + 3) \quad \therefore \frac{dy}{dx} = (x^2 + 1) \times 3x^2 + (x^3 + 3) \times 2x \\ = 3x^4 + 3x^2 + 2x^4 + 6x \\ = 5x^4 + 3x^2 + 6x$$

when $x = -1 \quad \therefore \frac{dy}{dx} = 5(-1)^4 + 3(-1)^2 + 6(-1) = 2$

 Try to solve

3) Find $\frac{dy}{dx}$ if $y = (4x^2 - 1)(7x^3 + x)$, then find $\frac{dy}{dx}$ when $x = 1$

Derivative of the quotient of two functions:

If z and g are two differentiable functions with respect to the variable x and $g(x) \neq 0$, then the function $(\frac{z}{g})$ is also differentiable with respect to the variable x

$$\text{and } \frac{d}{dx} \left(\frac{z}{g} \right) = \frac{g \frac{dz}{dx} - z \frac{dg}{dx}}{g^2}$$

$$\text{i.e. } \left(\frac{z}{g} \right)' = \frac{g z' - z g'}{g^2}$$

 Example

4) Find $\frac{dy}{dx}$ If $y = \frac{x^2 - 1}{x^3 + 1}$

 Solution

$$\because y = \frac{x^2 - 1}{x^3 + 1} \quad \therefore \frac{dy}{dx} = \frac{(x^3 + 1) \times 2x - (x^2 - 1) \times 3x^2}{(x^3 + 1)^2}$$

$$\therefore \frac{dy}{dx} = \frac{2x^4 + 2x - 3x^4 + 3x^2}{(x^3 + 1)^2}$$

$$= \frac{-x^4 + 3x^2 + 2x}{(x^3 + 1)^2}$$

 Try to solve

4) Find $\frac{dy}{dx}$ if $y = \frac{x^3 + 2x^2 - 1}{x + 5}$

the composite function (Chain rule)

Work together

Work with a classmate

If $y = (3x^2 - 1)^4$, find $\frac{dy}{dx}$

Do you need long mathematical operations? Have you faced difficulties to find the derivative function?

You have previously learned the composition of the function and known that :

$$(f \circ r)(x) = f[r(x)]$$

If f and r are two functions where $y = f(z)$ and $z = r(x)$, then $y = f[r(x)]$

and we say that y is the composite function of x

Theorem

If $y = f(z)$ is differentiable with respect to the variable z , and $z = r(x)$ is differentiable with respect to the variable x , then $y = f(r(x))$ is differentiable with respect to the variable x and: $\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx}$

This theorem is known as the chain rule

Example

5) If $y = (x^2 - 3x + 1)^5$, find $\frac{dy}{dx}$

$$\text{let } z = x^2 - 3x + 1 \quad \therefore y = z^5$$

it is clear that y is differentiable with respect to z (polynomial at z) and $\frac{dy}{dz} = 5z^4$

and also z is differentiable with respect to x (polynomial at x) and $\frac{dz}{dx} = 2x - 3$,

$$\text{By applying the chain rule } \therefore \frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx} = 5z^4 \times (2x - 3)$$

By substituting z

$$\therefore \frac{dy}{dx} = 5(x^2 - 3x + 1)^4 \times (2x - 3)$$

Try to solve

5 Find $\frac{dy}{dx}$ using the chain rule in **work together** and check your previous work.

Example

6 If $y = \sqrt[3]{z}$, $z = x^2 - 3x + 2$, find $\frac{dy}{dx}$

Solution

$$\begin{aligned} \because y &= z^{\frac{1}{3}} & \frac{dy}{dz} &= \frac{1}{3} z^{-\frac{2}{3}} \\ \because z &= x^2 - 3x + 2 & \frac{dz}{dx} &= 2x - 3 \\ \therefore \frac{dy}{dx} &= \frac{dy}{dz} \times \frac{dz}{dx} & = \frac{1}{3} z^{-\frac{2}{3}} (2x - 3) & \therefore \frac{dy}{dx} = \frac{1}{3} (2x - 3) (x^2 - 3x + 2)^{-\frac{2}{3}} \end{aligned}$$

Try to solve

6 If $y = 3z^2 - 1$, $z = \frac{5}{x}$, find $\frac{dy}{dx}$

Derivative of the function $[f(x)]^n$

If $z = [f(x)]^n$ where f is differentiable with respect to x and n is a real number ,

then: $\frac{dz}{dx} = n [f(x)]^{n-1} \times f'(x)$

Example

7 Find $\frac{dy}{dx}$ if

a $y = (6x^3 + 3x + 1)^{10}$

b $y = \left(\frac{x-1}{x+1}\right)^5$

Solution

a $y = (6x^3 + 3x + 1)^{10}$

$$\begin{aligned} \therefore \frac{dy}{dx} &= 10 (6x^3 + 3x + 1)^9 \times \frac{d}{dx} (6x^3 + 3x + 1) \\ &= 10 (18x^2 + 3) (6x^3 + 3x + 1)^9 \\ &= 30 (6x^2 + 1) (6x^3 + 3x + 1)^9 \end{aligned}$$

b $y = \left(\frac{x-1}{x+1}\right)^5$

$$\begin{aligned} \therefore \frac{dy}{dx} &= 5 \left(\frac{x-1}{x+1}\right)^4 \times \frac{(x+1) \times 1 - (x-1) \times 1}{(x+1)^2} \\ &= 5 \left(\frac{x-1}{x+1}\right)^4 \times \frac{x+1 - x+1}{(x+1)^2} \\ &= \frac{10}{(x+1)^2} \times \left(\frac{x-1}{x+1}\right)^4 = \frac{10(x-1)^4}{(x+1)^6} \end{aligned}$$

Try to solve

7) Find $\frac{dy}{dx}$ if $y = \left(\frac{5x^2}{3x^2+2}\right)^3$

Example

8) If $f(x) = \frac{1}{3}x^3 - 2x^2 + 5x - 4$, find the values of x which make $f'(x) = 2$

Solution

$$\begin{aligned}f'(x) &= \frac{1}{3} \times 3x^2 - 2 \times 2x + 5 \times 1 \\&= x^2 - 4x + 5\end{aligned}$$

$$\begin{aligned}\text{When } f'(x) &= 2 \quad \therefore x^2 - 4x + 5 = 2 \quad \text{and } x^2 - 4x + 3 = 0 \\ \therefore (x-1)(x-3) &= 0 \quad \therefore x = 1 \quad \text{or} \quad x = 3\end{aligned}$$

Try to solve

8) Find the values of x which make $f'(x) = 7$ in each of the following:

a) $f(x) = x^3 - 5x + 2$

b) $f(x) = (x-5)^7$

 Exercises 3 - 3

Complete:

1) $\frac{d}{dx} \left(\frac{1}{x^3}\right) = \dots$

2) $\frac{d}{dx} (5\pi) = \dots$

3) $\frac{d}{dx} (x^{\frac{1}{2}}) = \dots$

4) $\frac{d}{dx} \left(\frac{1}{\sqrt[3]{x}}\right) = \dots$

5) $\frac{d}{dx} (5x^2 + 3x + 2) = \dots$

6) $\frac{d}{dx} \left(\sqrt{2}x^7 - \frac{x^5}{5} + \pi\right) = \dots$

Find the first derivative for each of the following functions with respect to x .

7) $y = 2x^6 + 3\sqrt{x}$

8) $y = \frac{4x^2 - 3x + 2\sqrt{x}}{x}$

9) $y = x(3x^2 - \sqrt{x})$

10) $y = \frac{4x^2 - x + 3}{\sqrt{x}}$

11) $y = (x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1)$

Find the first derivative for each of the following functions

12) $y = (x^2 + 3)(x^3 - 3x + 1)$

13) $y = (x^2 - \sqrt{x})(x^2 + 2\sqrt{x})$

14) $y = (2x^4 - 3x + 4)(x^2 + \sqrt{x} + \frac{2}{x})$

15) $y = \frac{5x - 2}{5x + 1}$

16) $y = \frac{x^2 + 2x + 5}{x^2 - 5x + 1}$

17) $y = \frac{x - 2}{x + 5}$

18) Find $\frac{dy}{dx}$ when $x = 2$ for each of the following:

a) $y = (x^3 + x - 9)^5$

b) $y = \sqrt[3]{(2x^3 + 4x + 3)^2}$

c) $y = z^2$, $z = 3x^2 - 2$

d) $y = 2z^3$, $z = 8x - 11$

e) $y = \frac{z - 1}{z + 1}$, $z = \frac{x + 1}{x - 1}$

19) If $y = a x^3 + b x^2$ and $\frac{dy}{dx} = 8$ when $x = 1$, and the average rate of change of y when x varies from -1 to 2 equals 7, find the values of the two constant a and b .

20) Find the value of $\frac{dy}{dx}$ at the point shown in each of the following:

a) $y = \left(\frac{x^2 - 2}{3 + x^2}\right)^7$ when $x = 0$

b) $y = (x^2 + 1)^5 (x^2 - x + 1)^{-4}$ when $x = 1$

 Activity

21) **Volumes** if the oil is poured at a rate of $10 \text{ cm}^3/\text{sec}$ in a cylindric barrel whose radius length of its base is 90 cm, find the rate of rising the oil in the barrel.

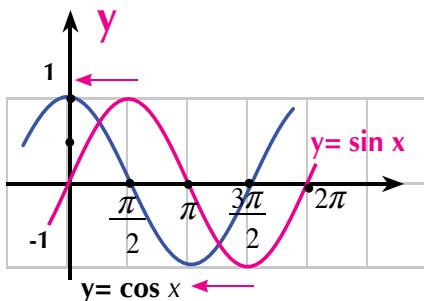
Derivatives of Trigonometric Functions

3 - 4

Explore

In our learning here, the measures of the angles are in radian measurement.

the opposite figure shows the curve of the sine function $y = \sin x$ and when it is translated to the left of a magnitude of $\frac{\pi}{2}$, the curve of the cosine function $y = \cos x$ is drawn also : $\cos x = \sin(\frac{\pi}{2} + x) = \sin(\frac{\pi}{2} - x)$, so, it is enough to find the derivative of $\sin x$ using the definition and deducing the rest of the other trigonometric derivatives.



Derivatives of Trigonometric Function

Learn

The derivative of sine function

If $f(x) = \sin x$ then $f'(x) = \cos x$

$\because f(x) = \sin x$, $f(x+h) = \sin(x+h)$

$$\begin{aligned}
 \therefore f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{\sin(x+h) - \sin x}{h} \\
 &= \lim_{h \rightarrow 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \\
 &= \lim_{h \rightarrow 0} \left[\frac{\cos x \sin h}{h} + \frac{\sin x (\cos h - 1)}{h} \right] \\
 &= \cos x \lim_{h \rightarrow 0} \frac{\sin h}{h} + \sin x \times \lim_{h \rightarrow 0} \frac{\cos h - 1}{h} \\
 &= \cos x \times 1 + \sin x \times 0 = \cos x
 \end{aligned}$$

i.e : $\frac{d}{dx} (\sin x) = \cos x$

✳ (The proof is not required from students)

You will learn

- Derivative of the trigonometric functions
- $f(x) = \sin x$
- $f(x) = \cos x$
- $f(x) = \tan x$
- $f(x) = \cot x$
- $f(x) = \csc x$
- $f(x) = \sec x$

Key terms

- Derivative
- Trigonometric Function

aterials

- Scientific calculator
- Graphic programs

In general

If z is a differentiable function with respect to the variable x , then :

$$\frac{d}{dx} [\sin z] = \cos z \cdot \frac{d}{dx} z \quad [\text{chain rule}]$$

Example

1 Find $\frac{dy}{dx}$ for each of the following :

a) $y = 5 \sin x$

b) $y = x^3 \sin x$

c) $y = 2 \sin (3x + 4)$

Solution

a) $\because y = 5 \sin x$

$$\therefore \frac{dy}{dx} = 5 \times \frac{d}{dx} (\sin x) = 5 \cos x$$

b) $\because y = x^3 \sin x$

$$\begin{aligned} \therefore \frac{dy}{dx} &= x^3 \times \frac{d}{dx} (\sin x) + \sin x \times \frac{d}{dx} (x^3) \\ &= x^3 \cos x + 3x^2 \sin x \end{aligned}$$

c) $\because y = 2 \sin (3x + 4)$

putting $z = 3x + 4$ then : $y = 2 \sin z$

$$\therefore \frac{dz}{dx} = 3, \frac{dy}{dz} = 2 \cos z \text{ and by applying the chain rule } \left(\frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx} \right)$$

$$\therefore \frac{dy}{dx} = 2 \cos z \times 3 = 2 \cos (3x + 4) \times 3 = 6 \cos (3x + 4)$$

We can find $\frac{dy}{dx}$ directly using the generalization above as follows:

$$\frac{dy}{dx} = 2 \times \cos (3x + 4) \times 3 = 6 \cos (3x + 4)$$

1 Find $\frac{dy}{dx}$ for each of the following :

a) $y = x^2 + \sin x$

b) $y = \sin \frac{\pi}{4} - 7 \sin x$

c) $y = 5 \sin (3- 2x)$

Learn**2- Derivative of the cosine function**

If $y = \cos x$ then $\frac{dy}{dx} = -\sin x$

3- Derivative of the tangent function

If $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$

Notice :

$$\begin{aligned}
 (1) \frac{d}{dx} (\cos x) &= \frac{d}{dx} [\sin(\frac{\pi}{2} - x)] \\
 &= \cos(\frac{\pi}{2} - x) \times -1 \\
 &= -\sin x
 \end{aligned}$$

$$\begin{aligned}
 (2) \frac{d}{dx} (\tan x) &= \frac{d}{dx} (\frac{\sin x}{\cos x}) \\
 &= \frac{\cos x \times \cos x - (-\sin x) \times \sin x}{\cos^2 x} \\
 &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x
 \end{aligned}$$

 Example

2 Find the first derivative for each of the following :

a $y = 2 \cos x - \tan 5x$ **b** $y = \tan(1 - x^2)$ **c** $y = \cos^2(4x^2 - 7)$

 Solution

a $\because y = 2 \cos x - \tan 5x$

$$\therefore \frac{dy}{dx} = 2(-\sin x) - \sec^2 5x \times 5 = -2 \sin x - 5 \sec^2 5x$$

b $\because y = \tan(1 - x^2)$ $\therefore \frac{dy}{dx} = \sec^2(1 - x^2) \times -2x = -2x \sec^2(1 - x^2)$

c $\because y = \cos^3(4x^2 - 7)$ let $y = \cos^3 z$ where $z = 4x^2 - 7$

$$\therefore \frac{dy}{dz} = 3 \cos^2 z \times -\sin z = -3 \sin z \cos^2 z, \quad \frac{dz}{dx} = 8x$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dz} \times \frac{dz}{dx} = -24x \sin z \cos^2 z$$

$$\therefore \frac{dy}{dx} = -24x \sin(4x^2 - 7) \cos^2(4x^2 - 7)$$

 Try to solve

2 find $\frac{dy}{dx}$ for each of the following :

a $y = 2 \tan 3x$

b $y = 2 \cos(4 - 3x^2)$

c $y = 2 \sin x \cos x$

d $y = 2x \tan x$

e $y = \tan^2 3x$

f $y = \tan 4x^3$

 Example

3 If $y = \frac{\cos x}{1 - \sin x}$ prove that $(1 - \sin x) \frac{dy}{dx} = 1$, then find $\frac{dy}{dx}$ when $x = \frac{\pi}{6}$

 Solution

$$\therefore y = \frac{\cos x}{1 - \sin x}$$

$$\therefore \frac{dy}{dx} = \frac{(1 - \sin x)(-\sin x) - \cos x(-\cos x)}{(1 - \sin x)^2}$$

$$\frac{dy}{dx} = \frac{-\sin x + \sin^2 x + \cos^2 x}{(1 - \sin x)^2} = \frac{1 - \sin x}{(1 - \sin x)^2}$$

$$\therefore \frac{dy}{dx} = \frac{1}{1 - \sin x} \quad \text{i.e. } (1 - \sin x) \frac{dy}{dx} = 1$$

Remember

$$\sin^2 x + \cos^2 x = 1$$

$$\text{when } x = \frac{\pi}{6}, \text{ then } (1 - \sin \frac{\pi}{6}) \frac{dy}{dx} = 1$$

$$(1 - \frac{1}{2}) \frac{dy}{dx} = 1 \quad \therefore \frac{dy}{dx} = 2$$

Try to solve

3) If $y = 2x \sin x \cos x$ prove that: $\frac{dy}{dx} = \sin 2x + 2x \cos 2x$

4 - Derivative of cotangent function

If $y = \cot x$ where $x \in \mathbb{R}, x \neq n\pi, n \in \mathbb{Z}$

then: $\frac{d}{dx} (\cot x) = -\csc^2 x$

5 - Derivative of the secant function

If $y = \sec x$ where: $x \in \mathbb{R}, x \neq \frac{(2n+1)\pi}{2}, n \in \mathbb{Z}$

then:

$$\frac{d}{dx} (\sec x) = \sec x \tan x \quad (\text{check})$$

6 - Derivative of cosecant function:

If $y = \csc x$ where $x \in \mathbb{R}, x \neq n\pi, n \in \mathbb{Z}$

Then: $\frac{d}{dx} (\csc x) = -\csc x \cot x \quad \text{check}$

Example

4) Find $\frac{dy}{dx}$ for each of the following:

a) $y = 3x^5 + 4 \cot x$

b) $y = 3 \sec x - 5 \tan x$

c) $y = x^3 \csc x$

d) $y = \frac{1 - \cot x}{1 + \cot x}$

Solution

a) $\frac{dy}{dx} = 3 \times 5x^4 + 4(-\csc^2 x) = 15x^4 - 4\csc^2 x$

b) $\frac{dy}{dx} = 3(\sec x \tan x) - 5 \sec^2 x = \sec x [3 \tan x - 5 \sec x]$

c) $\frac{dy}{dx} = 3x^2 \csc x + x^3(-\csc x \cot x) = x^2 \csc x [3 - x \cot x]$

d) $\frac{dy}{dx} = \frac{(1 + \cot x)(\csc^2 x) - (1 - \cot x)(-\csc^2 x)}{(1 + \cot x)^2}$

$$= \frac{\csc^2 x [1 + \cot x + 1 - \cot x]}{(1 + \cot x)^2} = \frac{2 \csc^2 x}{(1 + \cot x)^2}$$

F Try to solve1 Find $\frac{dy}{dx}$, if y equals:

a $2 \sin x - 3 \cot x$

b $\cos x + 4 \sec x$

c $\sec x \tan x$

d $\csc x \cot x$

e $\frac{\sec x}{1 + \sec x}$

f $\frac{1 - \csc x}{1 + \csc x}$

Exercises 3 - 4

Choose the correct answer:

1 If $y = \sin(2x+5)$, then $y' =$

a $2 \cos 2x$

b $-2 \cos 2x$

c $\cos(2x+5)$

d $2 \cos(2x+5)$

2 If $y = 3x - \cos 2x$, then $y' =$

a $3 - \sin 2x$

b $3 + \sin 2x$

c $3 + 2 \sin 2x$

d $3 - 2 \sin 2x$

3 If $y = 3 \cos(2 - 4x)$, then $y' =$

a $4 \sin(2 - 4x)$

b $12 \sin(2 - 4x)$

c $-6 \sin(2 - 4x)$

d $-12 \sin(2 - 4x)$

4 If $f(x) = \tan(5x - \pi)$, then $f'(\frac{\pi}{4}) = \dots$

a 5

b $5\sqrt{2}$

c 10

d $10\sqrt{3}$

Complete :

5 $\frac{d}{dx}(\cos x - \sin x) = \dots$

6 $\frac{d}{dx}(\tan 3x^2) = \dots$

7 $\frac{d}{dx}(\cos 2\pi) = \dots$

8 $\frac{d}{dx}(\cos^2 x + \sin^2 x) = \dots$

9 $\frac{d}{dx}(x \cos x) = \dots$

Find $\frac{dy}{dx}$ in each of the following:

10 $y = \sin(4x + 7)$

11 $y = \sin(x^2 + 3)$

12 $y = \cos(5x + 3)$

13 $y = 3 \tan(2x + 3)$

14 $y = \tan(-5x^2 + 19)$

15 $y = \frac{\tan x}{x}$

16 $y = x \sin(3x - 2)$

17 $y = \frac{x}{\cos x}$

18 $y = x^2 \sin(2x^2 + 5)$

19 $y = \frac{\sin x}{1 + \cos x}$

20 $y = \sec^2 x - 1$

(21) $y = \sin\left(\frac{1}{x^2}\right)$

(22) $y = \tan\sqrt{x}$

(23) $y = 4 \cos^5 x$

(24) $y = 4x + 5 \sin 4x$

(25) $y = x^3 - 2 \sec x$

(26) $y = \csc(2 - 3x)$

(27) $y = \cot(\pi - \frac{1}{x})$

(28) $y = \cos 2x - 5 \cot 3x$

(29) $y = \tan 3x - \csc 2x$

Find the slope of the tangent for each of the following curves:

(30) $y = 5 - \sin x$ when $x = \frac{\pi}{4}$

(31) $y = \sin x + \sin 2x$ when $x = \frac{\pi}{2}$

(32) $y = x \cos 2x$ when $x = \frac{\pi}{4}$

(33) $y = x \sqrt{\sin x}$ when $x = \frac{\pi}{2}$

(34) Find the slope of the tangent to the curve of the function f where $y = f(x)$ for each of the following:

(a) $y = 2 \cot x + \sqrt{2} \sec x$ at $x = \frac{\pi}{4}$

(b) $y = 3 \tan x - \csc^2 x$ at $x = \frac{3\pi}{4}$

(35) Prove that the tangent to the curve of $y = \cos x$ when $x = \frac{\pi}{2}$ makes with the positive direction of x-axis a positive angle of measurement $\frac{3\pi}{4}$.

(36) If $y = \sin^2 x - \cos^2 x$, Prove that $\frac{dy}{dx} = 2 \sin 2x$

(37) If $y = (\sin x + \cos x)^2$, Prove that $\frac{dy}{dx} = 2 \cos 2x$

(38) If $y = \frac{\sin x}{1 + \cos x}$, Prove that $(1 + \cos x) \frac{dy}{dx} = 1$

(39) If $y = \sec 4x$, find the rate of change of y with respect to x when $x = \frac{\pi}{4}$

Applications on Derivatives

Introduction

Geometric applications on the derivative of the function require finding the equation of the straight line in terms of its slope and a point lies on it. Remember the relation between the two slopes of the two parallel straight lines and the two perpendicular straight lines.

Slope of the Tangent and the Normal to a Curve

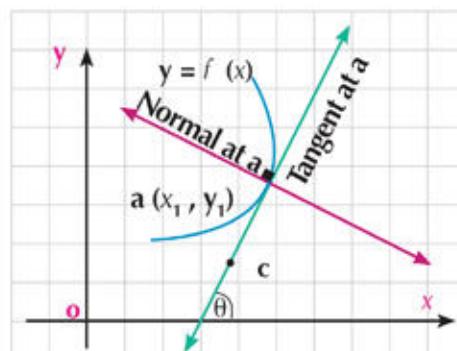
In this unit, you knew that:

- The first derivative of the function f where $y = f(x)$ means the slope of the tangent to the curve of this function at any point (x, y) lying on it.

i.e.: The slope of the tangent to the curve of $y = f(x)$ at point $a (x_1, y_1)$ lying on it $= [\frac{dy}{dx}]_{(x_1, y_1)}$

then

$$\tan \theta = [\frac{dy}{dx}]_{(x_1, y_1)}$$



where θ is the measurement of the positive angle which the tangent makes with the positive direction of x-axis .

Notice:

- If m_1 and m_2 are the two slopes of two known straight lines ℓ_1 and ℓ_2 , then:
 - $\ell_1 \parallel \ell_2$ if and only if $m_1 = m_2$ (parallel condition)
 - $\ell_1 \perp \ell_2$ if and only if $m_1 m_2 = -1$ (perpendicular condition)

So :

slope of the normal on the curve of $y = f(x)$ at point (x_1, y_1)

$$\text{lying on it} = - \frac{1}{[\frac{dy}{dx}]_{(x_1, y_1)}}$$

You will learn

- The slope of the tangent to the curve of the function.
- Slope of the normal

Key terms

- Slope of the tangent
- Slope of the normal
- Displacement
- Velocity
- Acceleration

Materials

- Scientific calculator
- Graphic program

Remember

Slope of the straight line

$$ax + by + c = 0$$

$$\text{equals } \frac{-a}{b}$$

Example

1 Find the points which lie on the curve of $y = x^3 - 4x + 3$ at which the tangent makes a positive angle of measure 135° with the positive direction of x axis .

Solution

$$\because y = x^3 - 4x + 3 \quad \therefore \frac{dy}{dx} = 3x^2 - 4$$

\therefore the tangent makes an angle of measure 135° with the positive direction of x-axis

\therefore the slope of the tangent = $\tan 135^\circ = -1$

$$\therefore \frac{dy}{dx} = 3x^2 - 4 = -1 \quad \therefore 3x^2 = 3 \quad \therefore x = \pm 1$$

$$\text{when } x = -1 \quad \therefore y = (-1)^3 - 4(-1) + 3 = 6$$

$$\text{, when } x = 1 \quad \therefore y = 1 - 4 + 3 = 0$$

\therefore the points are $(-1, 6), (1, 0)$

Try to solve

1 Find the points which lie on the curve of $y = x^2 - 2x + 3$ at which the tangent to the curve is :

a Parallel to x-axis **b** Perpendicular to the straight line $x - 4y + 1 = 0$

Example

2 Find the slope of the normal on the curve of $y = \tan(\pi - \frac{2}{3}x)$ at point $(\pi, \sqrt{3})$

Solution

$$\because y = \tan(\pi - \frac{2}{3}x) \quad \therefore \frac{dy}{dx} = -\frac{2}{3} \sec^2(\pi - \frac{2}{3}x)$$

$$\text{the slope of the tangent to the curve at point } (\pi, \sqrt{3}) = -\frac{2}{3} \sec^2(\pi - \frac{2\pi}{3})$$

$$= -\frac{2}{3} \sec^2 \frac{\pi}{3} = \frac{2}{3} \times 4 = \frac{8}{3}$$

$$\text{the slope of the normal at point } (\pi, \sqrt{3}) = \frac{3}{8}$$

Try to solve

2 Find the measure of the positive angle which the normal on the curve of $y = \sqrt{2x^2 + 7}$ makes with the positive direction of x-axis at point $(-3, 5)$ to the nearest minute .

Creative thinking :

Find the value of a which makes the straight line $y = 4x + a$ is a tangent to the curve of $y = x^2 + 5$

The equations of the Tangent and Normal to a Curve

If (x_1, y_1) is a point lying on the curve of the function f where $y = f(x)$, and m is the slope of the tangent at this point, then:

1 - The equation of the tangent to the curve at point (x_1, y_1) is :

$$y - y_1 = m(x - x_1)$$

2 - The equation of the normal to the curve at point (x_1, y_1) is :

$$y - y_1 = -\frac{1}{m}(x - x_1)$$

3) Find the two equations of the tangent and normal to the curve of $y = 2x^3 - 4x^2 + 3$ at the point lying on the curve and whose abscissa = 2

$$\therefore y = 2x^3 - 4x^2 + 3$$

$$\therefore \text{when } x = 2 \quad \therefore y = 2(2)^3 - 4(2)^2 + 3 = 3$$

\therefore point $(2, 3)$ lies on the curve

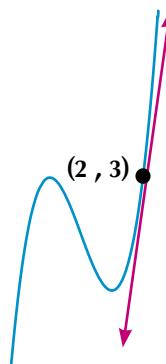
$$\therefore \frac{dy}{dx} = 6x^2 - 8x \quad \therefore [\frac{dy}{dx}]_{(2,3)} = 6(2)^2 - 8(2) = 8$$

\therefore the slope of the tangent = 8 and its equation is

$$y - 3 = 8(x - 2) \quad \text{i.e. } y - 8x + 13 = 0$$

the slope of the normal = $-\frac{1}{8}$ and its equation is

$$y - 3 = -\frac{1}{8}(x - 2) \quad \text{i.e. } 8y + x - 26 = 0$$



3) Find the two equations of the tangent and normal to the curve of $y = \frac{x+3}{x+1}$ at the point lying on the curve and whose abscissa = 1.

Does the point A (-3, 4) lie on the tangent? **Explain**

4) Find the equation of the tangent to the curve of $y = 4x - \tan x$ at point $(\frac{\pi}{4}, f(\frac{\pi}{4}))$

 Solution

$$\therefore y = 4x - \tan x$$

$$\text{when } x = \frac{\pi}{4}$$

$$\therefore \frac{dy}{dx} = 4 - \sec^2 x$$

$$m = 4 - \sec^2 \frac{\pi}{4} = 2$$

and by substituting $x = \frac{\pi}{4}$ in the equation of the curve **we find that:** $y = \pi - \tan \frac{\pi}{4} = \pi - 1$

i.e.: point $(\frac{\pi}{4}, \pi - 1)$ lies on the curve

\therefore the equation of the tangent at point $(\frac{\pi}{4}, \pi - 1)$ is: $y - (\pi - 1) = 2(x - \frac{\pi}{4})$

$$y - \pi + 1 = 2x - \frac{\pi}{2}$$

$$y = 2x + \frac{\pi}{2} - 1$$

 Try to solve

4) Find the equations of the tangent and normal to the curve of $y = x \sin 2x$ at point $(\frac{\pi}{4}, \frac{\pi}{4})$

 Example

5) If the curve $y = ax^3 + bx^2$ touches the straight line $y = 8x + 5$ at point $(-1, -3)$, find the two values of a and b.

 Solution

\therefore point $(-1, -3)$ lies on the curve $y = ax^3 + bx^2$

$$\therefore -3 = a(-1)^3 + b(-1)^2 \quad \text{i.e.} \quad a - b = 3 \quad (1)$$

the slope of the tangent to the curve at any point on it $= \frac{dy}{dx} = 3ax^2 + 2bx$

\therefore the straight line $y = 8x + 5$ is a tangent to the curve at point $(-1, -3)$

$$\therefore [\frac{dy}{dx}]_{(-1, -3)} = \text{the slope of the straight line} = 8$$

$$\therefore 3a(-1)^2 + 2b(-1) = 8 \quad \text{i.e.} \quad 3a - 2b = 8 \quad (2)$$

By solving the two equations (1) and (2) **we find that:** $a = 2, b = -1$

 Try to solve

5) Find the value of the two constants a and b if the slope of the tangent to the curve of $y = x^2 + ax + b$ at point $(1, 3)$ lying on it equals 5

 Example Areas

6) If the tangent to the curve of $y = \frac{4}{x}$ at point C at the first quadrant intersects the two coordinate axes at the two points M and N, prove that the area of the triangle M O N is constant and does not depend on the position of point C lying on the curve of the function.

Solution

$$\therefore y = 4x^{-1}$$

$$\text{Let } C(a, \frac{4}{a})$$

$$\therefore \frac{dy}{dx} = \frac{-4}{x^2}$$

\therefore the slope of the tangent at $C(a, \frac{4}{a})$ equals $\frac{-4}{a^2}$

$$\text{the equation of the tangent at } C \text{ is: } y - \frac{4}{a} = -\frac{4}{a^2}(x - a)$$

$$\text{By multiplying } \times a^2 \quad \therefore a^2 y - 4a = -4x + 4a$$

\therefore the equation of \overleftrightarrow{MN} is $a^2 y + 4x = 8a$

to find the intersection point of the straight line \overleftrightarrow{MN} with x-axis, then $y = 0$

$$\therefore x = 2a \quad \text{i.e. } OM = 2a \text{ of units}$$

to find the intersection point of the straight line \overleftrightarrow{MN} with y-axis, then $x = 0$

$$\therefore y = \frac{8}{a} \quad \text{i.e. } ON = \frac{8}{a} \text{ of units}$$

$$\therefore \text{Area } \triangle MON = \frac{1}{2} \times 2a \times \frac{8}{a} = 8 \text{ square units}$$

it is a constant amount which does not depend on the coordinate of point C lying on the curve.

Try to solve**Areas:**

6) Find the surface area of the triangle formed from x-axis, the tangent and the normal to the curve of $y = x^2 - 6x + 13$ at point (4, 5) lying on it.

1) Complete each of the following:

a) The slope of the tangent to the curve of the function f where $y = f(x)$ at any point on it is

b) The slope of tangent to the curve of $y = \cos x$ when $x = \frac{\pi}{3}$ equals

c) If the straight line $y = 8 - 3x$ is a tangent to the curve of the function f at point (3, -1) then $f'(3)$ equals

d) The tangent to the curve of $y = (3x - 5)^3$ at point (1, 2) makes with the positive direction of x-axis a positive angle of tangent equals

e The slope of the normal to the curve of $y = \sin 2x$ at the point which lies on the curve and its x-coordinate $= \frac{\pi}{6}$ equals

f The equation of the tangent to the curve of $y = (x - 1)^2$ at point $(2, 1)$ is

Answer the following:

2 Find the measure of the positive angle, which the tangent to the curve of $y = x^2 + \frac{1}{x} - 1$ makes with the positive direction of x-axis when $x = 1$

3 Find the measure of the positive angle, which the tangent to the curve of $y = \frac{x+3}{x-2}$ makes with the positive direction of x-axis at point $(3, 6)$

4 Find the point lying on the curve of $y = x^3 - 6x^2 - 15x + 20$ at which the tangent is parallel to x-axis .

5 Find the points on the curve of $y = 3x^3 - 11x + 5$ at which the tangent

- a** Parallel to the straight line $2x + y - 5 = 0$
- b** Perpendicular to the straight line $25y + x = 6$
- c** Makes a positive angle with the positive direction of x-axis whose tangent $= -11$

6 Find the equation of the tangent to the curve of the function $y = (x - 2)(x + 1)$ at its two intersection points with x-axis.

7 Find the equation of the normal on the tangent to the curve $y = \frac{x^2 - 1}{2 - x^2}$ when $x = 0$

8 Find the equation of the tangent to the curve of $y = 2 \sin x + \cos x$ at point $(0, 1)$.

9 Prove that the tangent drawn to the curve of $y = x^2 + x - 1$ at point $(1, 1)$ is perpendicular to the tangent drawn to the curve of $y = 2 - \sqrt[3]{x}$ at the same point .

Explore

You have already learned the differentiation and now you are able to find the derivative k' if you know the function k where $k'(x) = \frac{d}{dx} k(x)$. In this lesson, we are going to learn the antidifferentiation operation. In other words, How can we get the original function if the derivative k' is known?

to find the original function whose derivative with respect to x is $5x^4$, Let $f(x) = 5x^4$

Let's start with an inversed operation to the differentiation operation

$$n x^{n-1} = 5x^4 \quad \therefore n - 1 = 4, n = 5$$

then $F(x) = x^5$ or $x^5 + 3$ or $x^5 - 2$

the function f is called the antiderivative function or the original function of the function f

Learn

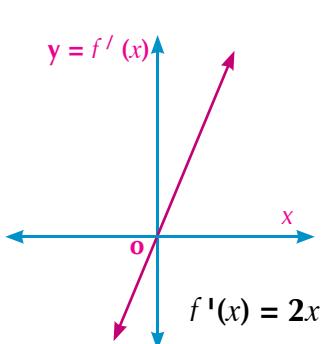
Antiderivative

If $y = x^2$ then the first derivative is $\frac{dy}{dx} = 2x$

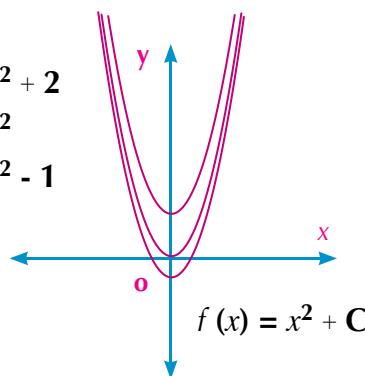
But deducting the function y from the derivative function $\frac{dy}{dx}$ is called the integration operation or the antiderivative.

For example x^2 is the antiderivative to the function $2x$, notice that $2x$ has several antiderivatives such as $x^2 - 1$, $x^2 + 2$, $x^2 + C$ where $C \in \mathbb{R}$, ... and all its derivatives are $2x$.

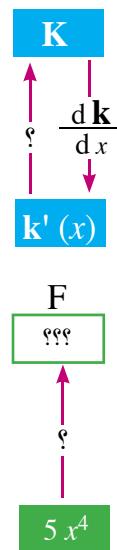
$\therefore \frac{d}{dx}(x^2 + C) = 2x$ where (C) is a constant and the following figures illustrate that.



$$\begin{aligned} f_1(x) &= x^2 + 2 \\ f_2(x) &= x^2 \\ f_3(x) &= x^2 - 1 \end{aligned}$$



K is continuous



You will learn

- Antiderivative of the function
- Integration of some algebraic functions.
- Integration of some trigonometric functions.

Key terms

- Antiderivative
- Integration

aterials

- Scientific calculator
- Graphic programs

Definition

It is said that the function F is antiderivative to the function f , if $F'(x) = f(x)$ for each x in the domain of f .

Example

1 Prove that the function f where $F(x) = \frac{1}{2}x^4$ is an antiderivative to the function f where $f(x) = 2x^3$.

Solution

Find the derivative of the function F , then $F'(x) = \frac{1}{2} \times 4x^3 = 2x^3$

$\therefore F'(x) = f(x)$ i.e. the function(F) is antiderivative to the function f

Try to solve

1 Show that the function F where $F(x) = \frac{1}{2}x^6$ is an antiderivative to the function f where $f(x) = 3x^5$

Critical thinking :

What is the relation between F_1 and F_2 if each of them is an antiderivative to the function f ?

Indefinite Integral

The set of the antiderivatives to the function f is called an indefinite integral of this function and is denoted by the symbol $\int f(x) dx$ [and read: integral of $f(x)$ with respect to x]

Definition

If $F'(x) = f(x)$, then $\int f(x) dx = F(x) + C$
where C is an arbitrary constant.

Notice : $\frac{d}{dx}(x^3 + 5) = 3x^2 \quad \therefore \int 3x^2 dx = x^3 + C$
 $\frac{d}{dx}(x^5 - 3) = 5x^4 \quad \therefore \int 5x^4 dx = x^5 + C$
 $\frac{d}{dx}(2x^7) = 14x^6 \quad \therefore \int 14x^6 dx = 2x^7 + C$

To identify the value of the constant C , it is necessary to know the value of integration at a certain value of the independent variable x it is out side your study .

Example

2 Check the correctness for each of the following:

a $\int x^7 dx = \frac{1}{8}x^8 + C$ b $\int \frac{x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} + C$

 Solution

a $\because \frac{d}{dx} \left(\frac{1}{8} x^8 + C \right) = x^7 \therefore \int x^7 dx = \frac{1}{8} x^8 + C$

b $\because \frac{d}{dx} \left(\sqrt{1+x^2} + C \right) = \frac{2x}{2\sqrt{1+x^2}} = \frac{x}{\sqrt{1+x^2}}$
 $\therefore \int \frac{x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} + C$

 Try to solve

2 Check the correctness for each of the following:

a $\int x^{-4} dx = \frac{1}{3} x^{-3} + C$

b $\int x \sqrt{1+x^2} dx = \frac{1}{3} (1+x^2)^{\frac{3}{2}} + C$

Rule:

$\int x^n dx = \frac{x^{n+1}}{n+1} + C$ where C is a constant, n is a rational number and $n \neq -1$

Example

find:

3 a $\int x^5 dx$

b $\int x^{-3} dx$

c $\int x^{\frac{2}{5}} dx$

d $\int \frac{1}{\sqrt[5]{x^3}} dx$

 Solution

a $\int x^5 dx = \frac{x^{5+1}}{5+1} + C = \frac{1}{6} x^6 + C$

b $\int x^{-3} dx = \frac{x^{-3+1}}{-2} + C = -\frac{1}{2} x^{-2} + C$

c $\int x^{\frac{2}{5}} dx = \frac{1}{\frac{7}{5}} x^{1+\frac{2}{5}} + C = \frac{5}{7} x^{\frac{7}{5}} + C$

d $\int \frac{1}{\sqrt[5]{x^3}} dx = \int x^{-\frac{3}{5}} dx = \frac{1}{\frac{2}{5}} x^{1+\frac{-3}{5}} + C = \frac{5}{2} x^{\frac{2}{5}} + C$

 Try to solve

3 Find:

a $\int x^8 dx$

b $\int x^{\frac{2}{3}} dx$

c $\int \sqrt[3]{x^5} dx$

d $\int 7x^{\frac{7}{9}} dx$

Properties of Integration

If f and g are integrable functions on an interval, then:

1- $\int a f(x) dx = a \int f(x) dx$ where a is a constant $\neq 0$

2- $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$

Example

4 Find: a $\int (4x + 3x^2) dx$

b $\int \frac{(x^2 + 2)^2}{x^2} dx$

Solution

$$\begin{aligned} \text{a } \int (4x + 3x^2) dx \\ = \int 4x dx + \int 3x^2 dx \\ = 4 \int x dx + 3 \int x^2 dx \\ = \frac{4}{2} x^2 + 3 \times \frac{1}{3} x^3 + C \\ = 2x^2 + x^3 + C \end{aligned}$$

$$\begin{aligned} \text{b } \int \frac{(x^2 + 2)^2}{x^2} dx \\ = \int \frac{x^4 + 4x^2 + 4}{x^2} dx \\ = \int x^2 dx + \int 4 dx + \int 4x^{-2} dx \\ = \frac{1}{3} x^3 + 4x - 4x^{-1} + C \end{aligned}$$

Try to solve

4 Find:

a $\int (2 + \sqrt{x} + \frac{1}{\sqrt{x}}) dx$

b $\int (\frac{1}{x^2} + \sqrt{x} + 3) dx$

Some rules of integration

1- $\int (ax + b)^n dx = \frac{1}{a} \times \frac{(ax + b)^{n+1}}{n+1} + C, n \neq -1$

2- $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + C$, where C is a constant and n is a rational number $\neq -1$

Critical thinking:

1- Can you check the correctness of the two previous relations through the definition of the antiderivative? Explain.

Example

5 Find:

a $\int ((3 - 2x)^5 + 3) dx$

b $\int \frac{x+3}{(x-2)^4} dx$

c $\int (x^2 - 3x + 5)^{-7} (2x - 3) dx$

d $\int (3x^2 - 2x + 1)^{11} (3x - 1) dx$

 Solution

a
$$\int ((3 - 2x)^5 + 3) dx = \int (3 - 2x)^5 dx + 3 \int dx$$

$$= \frac{(3 - 2x)^6}{6 \times -2} + 3x + C = \frac{-1}{12} (3 - 2x)^6 + 3x + C$$

b
$$\int \frac{x+3}{(x-2)^4} dx = \int \frac{(x-2)+5}{(x-2)^4} dx = \int \frac{x-2}{(x-2)^4} dx + \int \frac{5}{(x-2)^4} dx$$

$$= \int (x-2)^{-3} dx + 5 \int (x-2)^{-4} dx$$

$$= \frac{(x-2)^{-2}}{-2 \times 1} + \frac{5(x-2)^{-3}}{-3 \times 1} + C = \frac{-1}{2(x-2)^2} - \frac{5}{3(x-2)^3} + C$$

c
$$\int (x^2 - 3x + 5)^{-7} (2x - 3) dx$$

$$\because f(x) = x^2 - 3x + 5, \quad \because f'(x) = 2x - 3$$

$$\therefore \int (x^2 - 3x + 5)^{-7} (2x - 3) dx = \frac{(x^2 - 3x + 5)^{-6}}{-6} + C$$

$$= \frac{-1}{6} (x^2 - 3x + 5)^{-6} + C$$

d
$$\int (3x^2 - 2x + 1)^{11} (3x - 1) dx$$

$$\because f(x) = 3x^2 - 2x + 1,$$

$$\because f'(x) = (6x - 2)$$

$$\therefore \frac{1}{2} \int (3x^2 - 2x + 1)^{11} (6x - 2) dx = \frac{1}{2} \frac{(3x^2 - 2x + 1)^{12}}{12} + C$$

$$= \frac{1}{24} (3x^2 - 2x + 1)^{12} + C$$

 Try to solve

5 Find:

a
$$\int (3x + 5)^{-9} dx$$

b
$$\int (x + 1)(x + 3)^7 dx$$

c
$$\int (x^2 + 3x - 2)^9 (2x + 3) dx$$

d
$$\int x (4x^3 - 3x^2 + 4)^5 (2x - 1) dx$$

Search: use the resources of knowledge and internet to find: $\int \frac{1}{x} dx$

Integration of Some Trigonometric Functions

Indefinite integration
$\int \sin x \, dx = -\cos x + C$
$\int \cos x \, dx = \sin x + C$
$\int \sec^2 x \, dx = \tan x + C$
$\int \csc^2 x \, dx = -\cot x + C$
$\int \sec x \tan x \, dx = \sec x + C$
$\int \csc x \cot x \, dx = -\csc x + C$

Remember

Some trigonometric relations

a $\cos^2 x + \sin^2 x = 1$

b $\cos^2 x - \sin^2 x = \cos 2x$

c $1 + \tan^2 x = \sec^2 x$

d $2 \sin x \cos x = \sin 2x$

where C is an arbitrary constant

Example

6 Find the following integrations:

a $\int (x - \sin x) \, dx$

b $\int (4 \cos x + \frac{1}{\cos^2 x} + 1) \, dx$

a $\int (x - \sin x) \, dx = \frac{1}{2} x^2 + \cos x + C$

b $\int (4 \cos x + \frac{1}{\cos^2 x} + 1) \, dx = \int (4 \cos x + \sec^2 x + 1) \, dx$
 $= 4 \sin x + \tan x + x + C$

6 Find the following integrations:

a $\int (6 \cos x - 8 \sin x) \, dx$

b $\int (3 + 4 \tan^2 x) \, dx$

Example Table of integration

7 Find the following integrations:

a $\int (\sin x + \cos x) dx$

b $\int \sec x (\sec x - \tan x) dx$

c $\int \frac{1}{1 - \cos^2 x} dx$

d $\int \frac{\cos x}{1 - \cos^2 x} dx$

Solution

a $\int (\sin x + \cos x) dx = \int \sin x dx + \int \cos x dx$
 $= -\cos x + \sin x + C$

b $\int (\sec x - \tan x) \sec x dx = \int \sec^2 x dx - \int \sec x \tan x dx$
 $= \tan x - \sec x + C$

c $\int \frac{1}{1 - \cos^2 x} dx = \int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$

d $\int \frac{\cos x}{1 - \cos^2 x} dx = \int \frac{\cos x}{\sin^2 x} dx = \int \frac{1}{\sin x} \times \frac{\cos x}{\sin x} dx$
 $= \int \csc x \cot x dx = -\csc x + C$

Remember

$$\cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\cot^2 x + 1 = \csc^2 x$$

Try to solve

7 Find:

a $\int (\sin x + \sec^2 x) dx$

b $\int \sec x (\cos^2 x + \tan x) dx$

c $\int \csc x (\cot x - \csc x) dx$

d $\int \frac{\cos^2 x}{1 - \sin x} dx$

Important Corollaries:

1 - $\int \sin (ax + b) dx = -\frac{1}{a} \cos (ax + b) + C$

2 - $\int \cos (ax + b) dx = \frac{1}{a} \sin (ax + b) + C$

3 - $\int \sec^2 (ax + b) dx = \frac{1}{a} \tan (ax + b) + C$

4 - $\int \csc^2 (ax + b) dx = -\frac{1}{a} \cot (ax + b) + C$

5 - $\int \sec (ax + b) \tan (ax + b) dx = \frac{1}{a} \sec (ax + b) + C$

6 - $\int \csc (ax + b) \cot (ax + b) dx = -\frac{1}{a} \csc (ax + b) + C$

where C is an arbitrary constant

Critical thinking:

1- Check the correctness of the previous relations by finding the antiderivative using the chain rule.

 Example

8 Find:

a $\int \cos(2x+3) dx$

b $\int (\sec^2 \frac{x}{2} - \sin(\frac{\pi}{4} - x)) dx$

 Solution

a $\int \cos(2x+3) dx = \frac{1}{2} \sin(2x+3) + C$

b
$$\begin{aligned} \int \sec^2(\frac{1}{2}x) dx - \int \sin(\frac{\pi}{4} - x) dx \\ = \frac{1}{2} \tan \frac{x}{2} - [\frac{-1}{-1} \cos(\frac{\pi}{4} - x)] + C \\ = 2 \tan \frac{x}{2} - \cos(\frac{\pi}{4} - x) + C \end{aligned}$$

 Try to solve

7 Find :

a $\int \sin(3x-5) dx$

b $\int \cos(\frac{x}{2} - 2) dx$

 Example
The standard forms of the integration

9 Find :

a $\int \sin(2x-5) dx$

b $\int \sec^2(5-3x) dx$

c $\int \csc^2(\frac{x+3}{2}) dx$

d $\int \sec 2x \tan 2x dx$

 Solution

a $\int \sin(2x-5) dx = -\frac{1}{2} \cos(2x-5) + C$

b $\int \sec^2(5-3x) dx = -\frac{1}{3} \tan(5-3x) + C$

c $\int \csc^2(\frac{1}{2}x + \frac{3}{2}) dx = -2 \cot(\frac{x+3}{2}) + C$

d $\int \sec 2x \tan 2x dx = \frac{1}{2} \sec 2x + C$

 Try to solve

9 Find :

a $\int (\sin 3x - \sec^2 2x) dx$

b $\int 6 \sec 2x (\tan 2x + \cos^2 2x) dx$

c $\int [1 + \cot^2(3x-1)] dx$

d $\int \frac{\sin^2(2x-3)}{1 - \cos(2x-3)} dx$

Enrichmemd information

Definite integral

$$\int_a^b f(x) dx = f(b) - f(a)$$

Exercises 3 - 6

Complete each of the following:

- 1 The antiderivative of the function $(3x^2 - 2x + 5)$ is
- 2 $\int \left(\frac{5}{\sqrt{x}} + \frac{\sqrt{x}}{5} \right) dx =$
- 3 $\int (4x - \sin \frac{\pi}{3}) dx =$
- 4 $\int (x+5)^3 dx =$
- 5 $\int (x+2)(x^2 + 4x - 7)^{11} dx =$
- 6 $\int (\cos x \cos \frac{\pi}{4} - \sin x \sin \frac{\pi}{4}) dx =$
- 7 $\int \frac{\cos^2 x}{1 + \sin x} dx =$
- 8 $\int 2 \tan x \sec^2 x dx =$

Calculate the following integrations :

- 9 $\int 9x^8 dx$
- 10 $\int 12x^2 dx$
- 11 $\int 5\sqrt{x^3} dx$
- 12 $\int -\frac{8}{5}c^{-3} dc$
- 13 $\int 2(3z^2 - 5) dz$
- 14 $\int 3x^2 + x - 2 dx$
- 15 $\int (3\sqrt{x} - \frac{2}{x^3}) dx$
- 16 $\int (ax^2 + 5x + c) dx$
- 17 $\int x(x+3) dx$
- 18 $\int x^2(3x - \frac{5}{x}) dx$
- 19 $\int (x-2)(x+2) dx$
- 20 $\int (x-5)(x+1) dx$
- 21 $\int (\sqrt{x} - 1)^2 dx$
- 22 $\int (x + \frac{1}{x})^2 dx$
- 23 $\int \frac{2x^2 + 3}{x^2} dx$
- 24 $\int \frac{x^7 - 4x^5 + x^3}{x^3} dx$
- 25 $\int \frac{x^2 - 1}{x - 1} dx$
- 26 $\int \frac{x^3 - 27}{x - 3} dx$
- 27 $\int \frac{x^3 + 8}{x^2 - 2x + 4} dx$
- 28 $\int \frac{x^2 - 5x + 6}{x - 2} dx$

29 $\int 6(x - 2)^5 \, dx$

30 $\int 3(x + 3)^{-4} \, dx$

31 $\int (8 - 3x)^4 \, dx$

32 $\int (2z - 3)^{\frac{7}{3}} \, dz$

33 $\int \frac{12}{(2x - 5)^4} \, dx$

34 $\int \frac{7}{\sqrt{x + 4}} \, dx$

35 $\int (x - 1)(x^2 - 2x + 1) \, dx$

36 $\int \sqrt{x - 3} (x - 3)^4 \, dx$

37 $\int (x^2 - 2)^2 \, dx$

38 $\int x (3x^2 - 5)^3 \, dx$

39 $\int x(5x^2 + 2)^{-7} \, dx$

40 $\int \frac{x^3}{(x^4 + 1)^6} \, dx$

41 $\int (7 \sin x - 2 \cos x) \, dx$

42 $\int (\sin 2x - 3 \cos x) \, dx$

43 $\int 9(\cos x - \sec^2 3x) \, dx$

44 $\int (3 + 5\sec^2 x) \, dx$

45 $\int \sin(5x - 1) \, dx$

46 $\int \cos(2 - x) \, dx$

47 $\int \sin\left(\frac{x}{4} + \frac{\pi}{3}\right) \, dx$

48 $\int (\cos^2 x - \sin^2 x) \, dx$

49 $\int 2 \cos^2 x \, dx$

50 $\int (4 - \sin^2 x) \, dx$

51 $\int \sqrt{3} \cos x \, dx$

52 $\int \csc^2(2x + 3) \, dx$

53 $\int \tan x \cos x \, dx$

54 $\int (1 + \tan^2 x) \cos^2 x \, dx$

General exercises

Choose the correct answer:

1 $\frac{d}{dx} (\cos^2 x + \sin^2 x) =$

a 1 **b** 0 **c** x **d** $2(\cos x + \sin x)$

2 If $f(x) = \sqrt{x^2 + 9}$, then $f'(-4) =$

a $-\frac{4}{5}$ **b** 5 **c** $\frac{1}{10}$ **d** $-\frac{1}{10}$

3 $\int (x^2 - 3) dx =$

a $2x$ **b** $x^3 - 3x$ **c** $\frac{1}{3}x^3 - 3x + C$ **d** $2x - 3 + C$

4 $\lim_{x \rightarrow a} \frac{\sin x - \sin a}{x - a} =$

a $\cos x$ **b** 1 **c** $\cos a$ **d** $\sin(x - a)$

5 The slope of the tangent to the curve of the function $y = (2x - 3)^5$ when $x = 2$ equals

a 1 **b** $\frac{1}{12}$ **c** 5 **d** 10

6 $\frac{d}{dx} (2 - 3x)^{-2}$

a $12x^{-2} - 27x^{-4}$ **b** $\frac{1}{3}(2 - 3x)^{-1}$ **c** $6(2 - 3x)^{-3}$ **d** $-2(2 - 3x)^{-3}$

7 $\int \frac{d}{dx} [f(x)] dx = \dots$

a $f(x)$ **b** $f(x) + C$ **c** $\frac{d}{dx} (f(x))$ **d** $\int f(x) dx$

8 Discuss the differentiability of the following functions:

a $f(x) = \begin{cases} x^2 - 1 & \text{when } x > 2 \\ 4x & \text{when } x < 2 \end{cases}$ when $x = 2$

b $f(x) = \begin{cases} x^2 + 1 & \text{when } x \leq 1 \\ 2x & \text{when } x > 1 \end{cases}$ when $x = 1$

9 Find $\frac{dy}{dx}$ for each of the following:

a $y = x^5 - 2\sqrt{x^3}$ **b** $y = (4x^2 + 1)(1 - 4x^2)$

c $y = \sqrt[3]{(2x + 1)^5}$ **d** $y = (x^3 - 3x^2 + 2)^5$

10 If $y = x \sin x - 3 \cos x$ find $\frac{dy}{dx}$

11 If $y = (z - 1)^5$, $z = x^2 + 3$ find $\frac{dy}{dx}$

12 Find the points lying on the curve of the function $y = (x - 3)^2 - 1$ at which the tangent is parallel to the straight line $2x + y - 3 = 0$

13 If the slope of the tangent to the curve of the function $y = x^2 + ax + b$ equals -1 at point $(2, -2)$, find the value of a and b .

Find the equation of the tangent to the curve in each of the following at the given points:

14 $y = \sqrt{x} + \frac{4}{\sqrt{x}}$ at point $(4, 4)$

15 $y = (x^2 + x)(x^3 + 5)$ at point $(-2, -6)$

16 $y = \frac{1 + \sin x}{1 - \sin x}$ at point $(\pi, 1)$

Find the equation of the normal on the tangent to the curve in each of the following at the given points:

17 $y = \frac{x+2}{x-2}$ at point $(3, 5)$

18 $y = \tan x$ at point $(\frac{\pi}{4}, 1)$

Find the following integrations:

19 $\int (x^2 - 3x - 1) dx$

20 $\int (\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}) dx$

21 $\int (4 - 3x)^7 dx$

22 $\int (\sin x + \cos x)^2 dx$

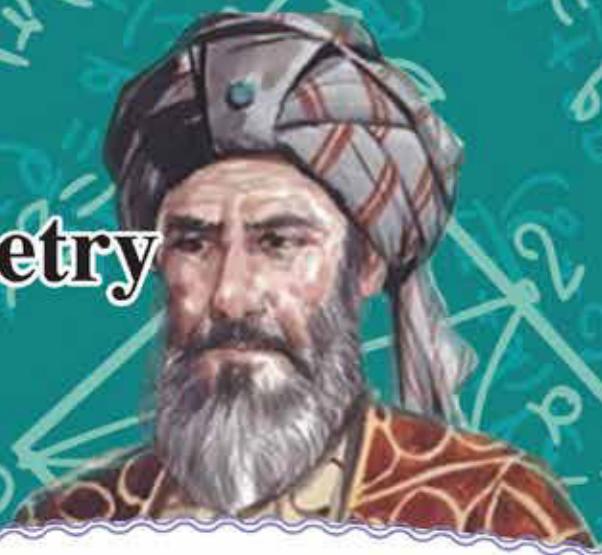
23 $\int (\cos x - \sin x)(\sin x + \cos x)^9 dx$

24 $\int \frac{x+2}{(3+x)^5} dx$

25 **Find the following integrations:**

a $\int (x^3 + \sqrt{x}) dx$	b $\int (x^2 + 1)^2 dx$	c $\int x^2 (x^2 - 3) dx$
d $\int 3(3x+1)^3 dx$	e $\int 2x(x^2 - 4)^3 dx$	f $\int \frac{x^2 - 1}{(x^3 - 3x)^2} dx$
g $\int (\cos 2x - x) dx$	h $\int (x^2 - 3x + 1)^3 (4x - 6) dx$	

Trigonometry



Unit introduction

Mohammed bin Jaber Bin Sinan Abu Abdullah Al-Battani (850 - 929) was one of the most famous astronomers and mathematicians. He had cared much about trigonometry and had separated it as an independent science from the astronomy. He had been the first to use algebra in trigonometry. Furthermore, he had originated the cosine tables (cos), sin angle (sin), cotangent angle (cot), and tangent angle (tan) from zero to 90°. These tables are still used up to now with little amendments. He had developed a lot of trigonometric identities. on the other hand Mohammed Bin Yahya Bin Ismail Bin Abbas Abou El-Wafa Al-Buzjani (940 - 998) learned the works of Al-Battani in trigonometry well and he had explained the mysterious points. He had invented the inverse of cosine (sec) and inverse of sine(csc). He had originated tables for sin and tan for each 10 minutes and he had known trigonometric identities named after him such as :

$$\sin A = 2\sin \frac{A}{2} \cos \frac{A}{2}, \tan A = \frac{\sin A}{\cos A}, \sec^2 A = 1 + \tan^2 A, \csc^2 A = 1 + \cot^2 A \text{ and others.}$$

This unit involves the study of life applications including angles of elevation and depression as a practical applications on the cosine and sine rules and also the study of the special trigonometric identities of the sum and difference of the measures of two angles and the double angle.

Unit objectives

By the end of the unit and doing the activities, students should be able to:

- # Solve applications on solving the triangle include angles of elevation and depression and cardinal points (main directions).
- # Deduce the special trigonometric identities of sum and difference of the measures of two angles.

- # Identify and deduce the special trigonometric identities of the double and half - angle.
- # Use the calculator to solve problems on the trigonometric identities.

Key terms

- Angle
- Angle of Elevation
- Angle of Depression
- Trigonometric Function
- Sine Function
- Cosine Function
- Trigonometric Functions of the sum of Measures of Two Angles
- Trigonometric Function of the Difference Between the Measures of Two Angles
- Trigonometric Functions of Double – Angle
- Trigonometric Functions of Half – an Angle

Unit Lessons

Lesson (4 - 1): Angles of elevation and depression (Application on solving the triangle).

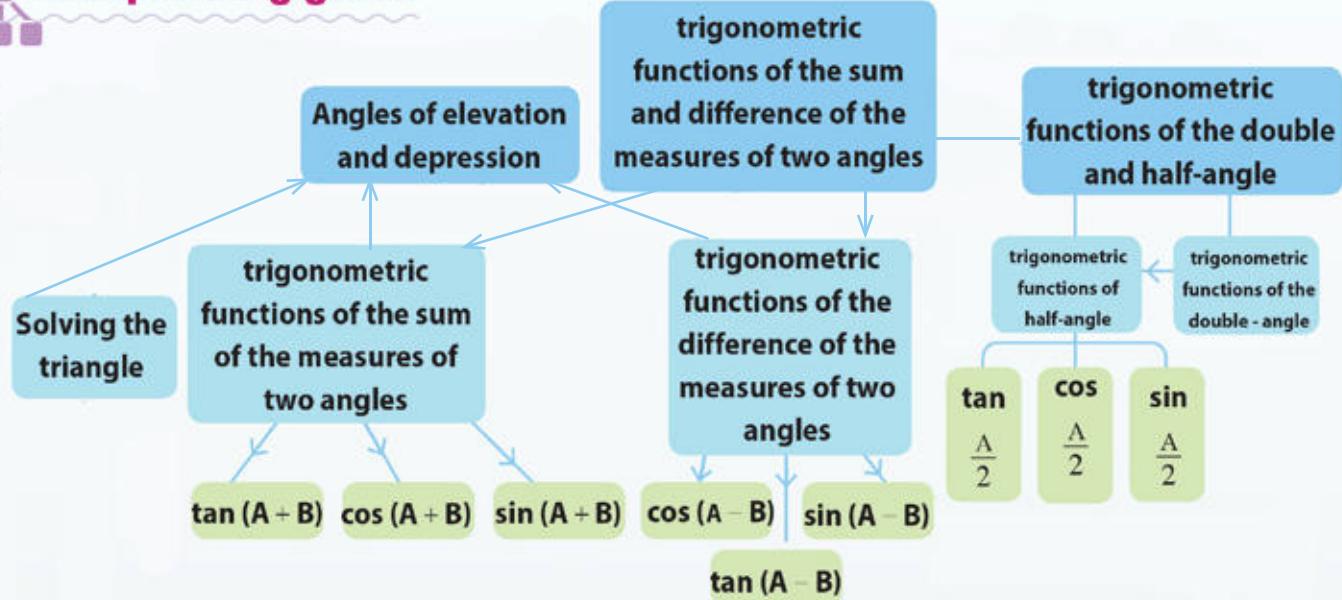
Lesson (4 - 2): Trigonometric functions of sum and difference of the measures of two angles.

Lesson (4 - 3): The trigonometric functions of the double-angle.

Materials

Scientific calculator- Internet

Unit planning guide



You will learn

- ▶ Concept of the angle of elevation.
- ▶ Concept of the angle of depression
- ▶ Solving applications on solving the triangle including angles of elevation and depression

Key terms

- ▶ Angle
- ▶ Angle of Elevation
- ▶ Angle of Depression

materials

- ▶ Scientific calculator

Activity

You have previously learned the angles of elevation and depression as an application to solve the right angled triangle. You can find the height of a minaret of the ground surface while you stand far from it for a known distance without measuring this minaret practically.

And now, after you learned the sine rule cosine rule and solving the triangle in general using those two rules, you can learn deeper applications on solving the triangle including the angles of elevation and depression in general .

- Look up the mathematical references at your school library or log in [\(Internet\)](#) for various situations using the angles of elevation and depression to solve them as an application on solving the triangle in general, Now, we are going to review the concept of the angles of elevation and depression with you.

angles of elevation and depression

Learn

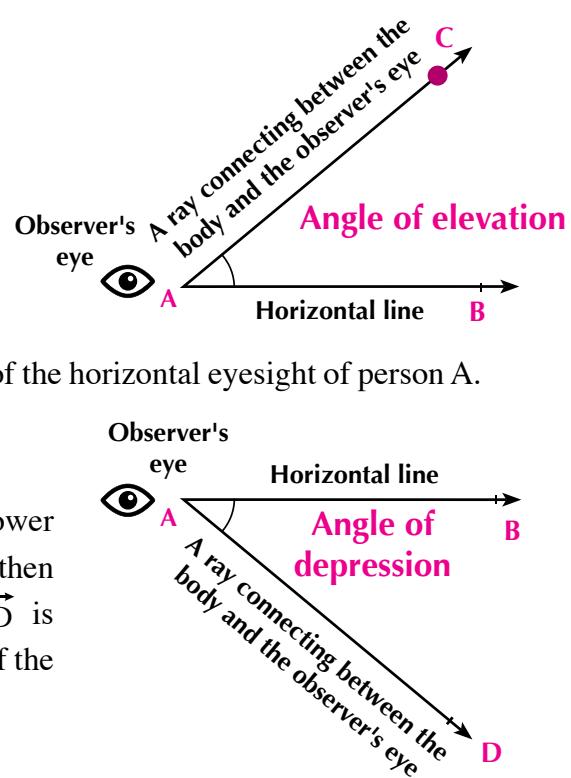
Angle of elevation

If person A observed point C higher than his horizontal eyesight level \overrightarrow{AB} , then the angle between \overrightarrow{AB} and \overrightarrow{AC}

is called the angle of elevation C of the horizontal eyesight of person A.

Angle of depression

If person A observed point D lower than his horizontal eyesight \overrightarrow{AB} , then the angle between \overrightarrow{AB} and \overrightarrow{AD} is called the angle of depression D of the horizontal eyesight of person A.



Notes:

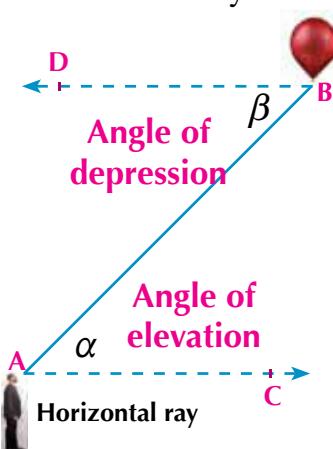
1- In the opposite figure:

$\angle CAB$ is the angle of elevation of the balloon with respect to the person at A.

$\angle DBA$ is the angle of depression of the person at A with respect to the balloon.

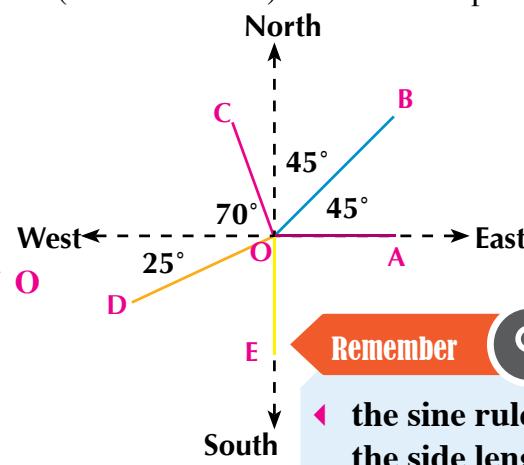
in this case $\alpha = \beta$

where α is the measurement of the angle of elevation and β is the measurement of the angle of depression.



2- to locate a point with respect to the cardinal points (main directions) from a known point, we find from the following figure that:

- A lies East of O
- B lies north of east of O
- C lies in the direction of 70° north of west of O
- D lies in the direction of 25° south of west of O
- E lies South of O

**Remember**

- the sine rule: the side lengths of a triangle are proportional to the sines of the opposite angles.
- the measurement of any exterior angle of a triangle equals the sum of non-adjacent interior angles.

Example

1 From a point on the ground surface, a man observed the top of a tower of an angle of elevation of 25° , then he walked straight a head for 57 m at the horizontal level toward the tower base to find that the angle of elevation of the tower top is $52^\circ 30'$. Find the height of the tower to the nearest meter.

Solution

from the opposite figure :

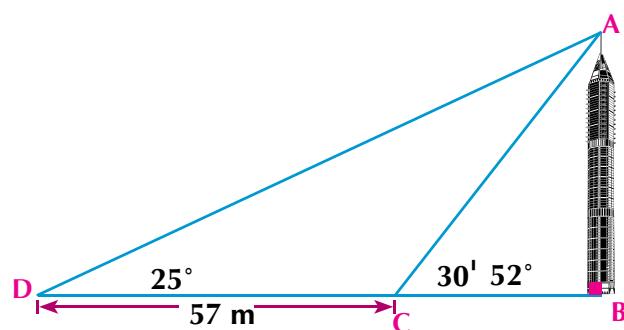
$$\begin{aligned} m(\angle CAD) &= 52^\circ 30' - 25^\circ \\ &= 27^\circ 30' \end{aligned}$$

in $\triangle ACD$:

$$\begin{aligned} \frac{AC}{\sin 25^\circ} &= \frac{57}{\sin 27^\circ 30'} \\ \therefore AC &= \frac{57 \times \sin 25^\circ}{\sin 27^\circ 30'} \end{aligned} \quad (1)$$

in $\triangle ABC$:

$$\frac{AB}{\sin 52^\circ 30'} = \frac{AC}{\sin 90^\circ}$$



$$\therefore AB = AC \times \sin 52^\circ 30' \quad (2)$$

By substituting from (1) in (2), then:

$$AB = \frac{57 \times \sin 25^\circ}{\sin 27^\circ 30'} \times \sin 52^\circ 30'$$

$AB \approx 41$ m, i.e. the height of the tower is approximately 41 meters.

→ start 5 7 x sin 2 5 (x sin 5 2 „ 3 0 „) ÷
sin 2 7 „ 3 0 „ =

Try to solve

1 From a point on the ground surface a man observed the top of a tower at an angle of elevation of 20° , He walked on a horizontal way in the direction of the tower base for 50 meters, the measurement of the angle of elevation of the tower top is 42° . Find the height of the tower to the nearest meter .

Example

2 A tower of height 100 meters is constructed on a rock . From a point on the ground surface in the horizontal level passing through the rock base, the measure of the angles of elevation of the top and base of the tower were measured to give 76° and 46° respectively. Find the height of the rock to the nearest meter.

Solution

$$m(\angle ADB) = 76^\circ - 46^\circ = 30^\circ$$

$$m(\angle A) = 90^\circ - 76^\circ = 14^\circ$$

$$\text{In the triangle } ABD: \frac{BD}{\sin 14^\circ} = \frac{100}{\sin 30^\circ}$$

$$BD = \frac{100 \sin 14^\circ}{\sin 30^\circ} \quad (1)$$

$$\text{In the triangle } BCD: \frac{BC}{\sin 46^\circ} = \frac{BD}{\sin 90^\circ}$$

$$BC = BD \sin 46^\circ \quad (2)$$

By substituting from (1) in (2) we deduce that

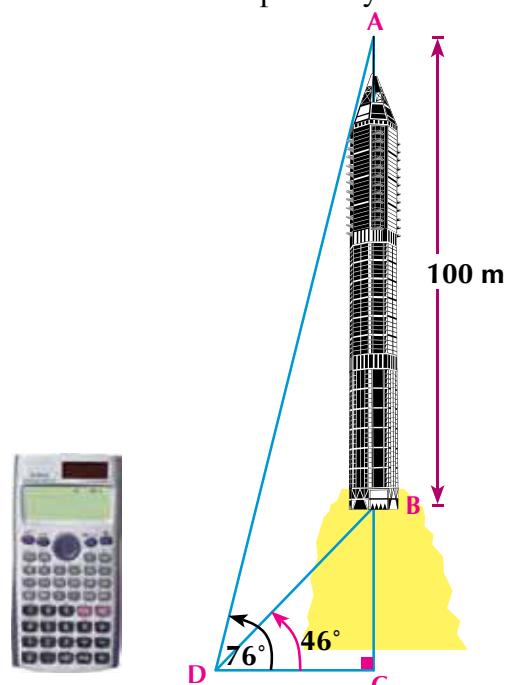
$$BC = \frac{100 \sin 14^\circ}{\sin 30^\circ} \times \sin 46^\circ \approx 35 \text{ m}$$

Use the calculator respectively as follows:

start → 1 0 0 x sin 1 4) x sin 4 6)
÷ sin 3 0) =

Try to solve

2 A tower of height 12 meters is constructed on a hill. If the measures of the two angles of elevation of the top and base of the tower from a point on the ground surface are 32° and 24° respectively, find the height of the hill to the nearest meter.



Example

3 From the top of a hill, a man observed the measures of the two angles of depression of the top and the base of a tower to give 22° and 30° respectively. If the height of the tower is 50 meters, find the height of the hill to the nearest meter known that the two bases of the tower and hill are in the same horizontal level.

Solution

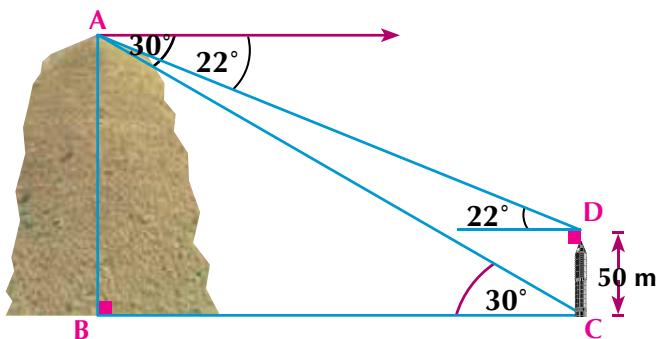
From the opposite figure:

$$m(\angle D A C) = 30^\circ - 22^\circ = 8^\circ$$

$$m(\angle C D A) = 90^\circ + 22^\circ = 112^\circ$$

$$\text{In the triangle } A C D \quad \frac{A C}{\sin 112^\circ} = \frac{50}{\sin 8^\circ}$$

$$A C = \frac{50 \sin 112^\circ}{\sin 8^\circ} \quad (1)$$



In the triangle $A C B$

$$\frac{A B}{\sin 30^\circ} = \frac{A C}{\sin 90^\circ} \quad \therefore A B = A C \sin 30^\circ \quad (2)$$

By substituting from (1) in (2), then:

$$A B = \frac{50 \sin 112^\circ \times \sin 30^\circ}{\sin 8^\circ} \approx 167 \text{ meters.}$$

start → 5 0 × sin 1 1 2) × sin 3 0) ÷ sin 8) =

Try to solve

3 From the top a rock of height 80 meters, the two angles of depression of the top and the base of a tower were measured to give 24° and 35° respectively. Find the height of the tower to the nearest meters known that the two bases of the rock and tower are in the same horizontal level.

Example

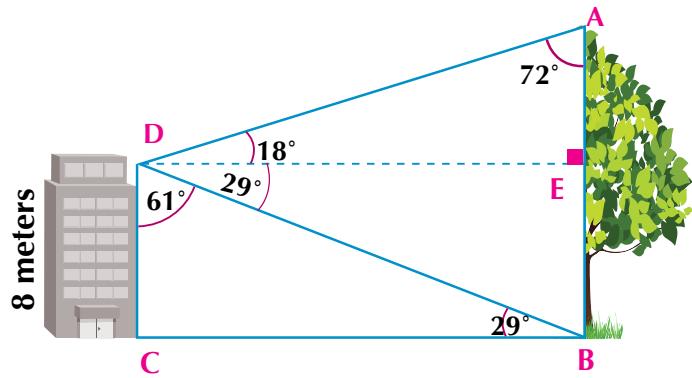
4 From the top of a building of height 8 meters, the measurement of the angle of elevation of the top of a tree was 18° and the measurement of the angle of depression of its base was 29° , find to the nearest two decimals the distance between the bases of the building and the tree and the height of the tree known that the two bases of the building and tree are in the same horizontal level.

Solution

$$m(\angle A) = 90^\circ - 18^\circ = 72^\circ$$

$$m(\angle B D C) = 90^\circ - 29^\circ = 61^\circ$$

$$\text{In } \triangle B C D: \because \frac{8}{\sin 29^\circ} = \frac{B C}{\sin 61^\circ}$$



$$\therefore BC = \frac{8 \times \sin 61^\circ}{\sin 29^\circ} \simeq 14.43 \text{ meters.}$$

the distance between the two bases of the building and tree $\simeq 14.43$ meters

In $\triangle AED$:

$$\therefore \frac{DE}{\sin 18^\circ} = \frac{ED}{\sin 72^\circ} \quad \text{notice that } (ED = BC)$$

$$\therefore AE = \frac{\sin 18^\circ}{\sin 72^\circ} \times BC \quad \therefore AE = \frac{\sin 18^\circ}{\sin 72^\circ} \times 14.43 \simeq 4.69 \text{ m}$$

\therefore Height of the tree $\simeq 8 + 4.69 \simeq 12.69$ m

Example

5 From point A on a riverbank, a man observed the position of a home at point B on the other riverbank to find it in the direction of 20° North of the east. As he walks parallel to the riverbank in the direction of East for a distance of 300 meters to reach point C, he found point B in the direction of 46° North of the east. Find the width of the river to the nearest meter known that the two riverbanks are parallel and points A, B and C are at the same horizontal level.

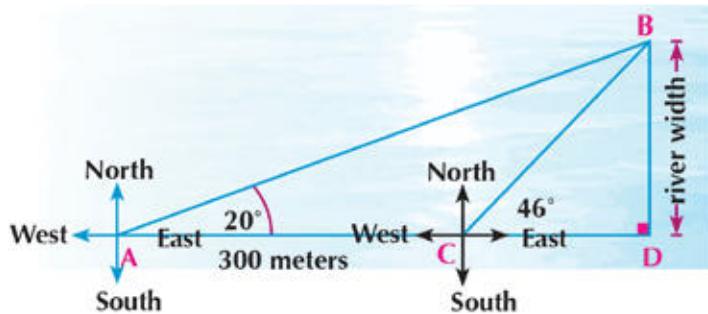
Solution Let the width of the river is \overline{BD}

In the triangle ABC

$$m(\angle ABC) = 46^\circ - 20^\circ = 26^\circ$$

$$\frac{BC}{\sin 20^\circ} = \frac{300}{\sin 26^\circ}$$

$$BC = \frac{300 \sin 20^\circ}{\sin 26^\circ} \quad (1)$$



In the triangle BDC

$$\therefore \frac{BD}{\sin 46^\circ} = \frac{BC}{\sin 90^\circ} \quad \therefore BD = BC \times \sin 46^\circ \quad \therefore BD = \frac{300 \times \sin 20^\circ}{\sin 26^\circ} \times \sin 46^\circ \simeq 168 \text{ meters}$$

start \rightarrow 3 0 0 \times sin 2 0 (\times sin 4 6 (\div sin 2 6 (=

Example

7 **Marine navigation:** A ship sailed from a certain point in the direction of $68^\circ 25'$ south of the west at speed of 15 km/h and at the same time, another ship sailed from the same point in the direction of $53^\circ 48'$ North of the west at speed of 8 km/h. Find the distance between the two ships after 3 hours to the nearest two decimals.

Solution

∴ Uniform velocity = $\frac{\text{distance traveled (covered)}}{\text{time taken to cover the distance}}$

Distance covered = uniform velocity \times time taken to cover the distance

$$\therefore AB = 15 \times 3 = 45 \text{ km}$$

$$AC = 8 \times 3 = 24 \text{ km}$$

$$\therefore m(\angle BAD) = 90^\circ - 68^\circ 25' = 21^\circ 35'$$

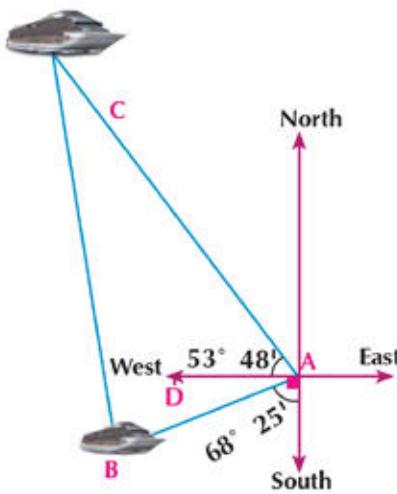
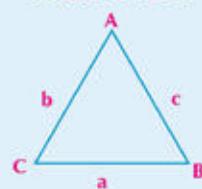
$$\therefore m(\angle BAC) = 21^\circ 35' + 53^\circ 48' = 75^\circ 23'$$

In the triangle ABC

By applying the cosine rule

$$(BC)^2 = (45)^2 + (24)^2 - 2 \times 45 \times 24$$

$$\cos 75^\circ 23' \therefore BC \approx 45.34 \text{ km}$$

**Remember****Cosine rule**

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\text{then } \cos A =$$

$$\frac{b^2 + c^2 - a^2}{2bc}$$

and so on with respect to the other side lengths and measurements of angles.

start \rightarrow 4 5 χ^2 + 2 4 χ^2 - 2 \times 4 5 \times 2 4 \times Cos
 7 5 „ „ 2 3 „ „) = $\sqrt{\quad}$ Ans =

Try to solve

7 **Marine navigation:** A ship sailed from a certain point in the direction of 70° East of the south at speed of 12 km/h and at the same time, another ship sailed from the same point in the direction of 55° North of the east at speed of 5 km/h. Find the distance between the two ships after 2 hours to the nearest two decimals.

Exercises 4 - 1

- 1 A man observed the angle of elevation of a tower top from a point on the ground surface to find its measurement is $20^\circ 35'$. He walked on a horizontal road in the direction of the tower base for a distance of 50m to find the measurement of the angle of elevation of the tower top is 42° . Find the height of the tower to the nearest meter .
- 2 From a top of a house of height 15m , the measurement of the angle of elevation of a tower top is 67° and the measurement of the angle of depression of a tower base is 35° . Find the height of the tower to the nearest meter known that the tower base and the house base are at the same horizontal level.
- 3 From a tower top of height 65 meters, the two angles of depression of points A and B at the horizontal level are measured to give 32° and $21^\circ 12'$ respectively. If D represents the tower base and $A \in \overline{BD}$, find the length of \overline{AB} to the nearest meter.
- 4 From a hill top, an observer found that the measurement of the two angles of depression of a tower top and its base are 15° and 26° respectively. If the height of the tower is 50 meters, calculate the height of the hill to the nearest meter known that the two bases of the hill and tower are at the same horizontal level.
- 5 A lighthouse of height 60 meters is constructed on a hill close to the seashore. The two angles of elevation of the top and base of the lighthouse were measured from a boat on the sea to give 70° and 45° respectively. Find the height of the hill from the sea level to the nearest meter.

6 In the opposite figure: two balloons A and E of height $100\sqrt{2}$ and 50 meters. A body (C) on the ground lying at the vertical level passing through the balloons is observed . If the measurement of the two angles of depression of the body are 45° and 30° respectively, find the distance between the two balloons to the nearest meter.

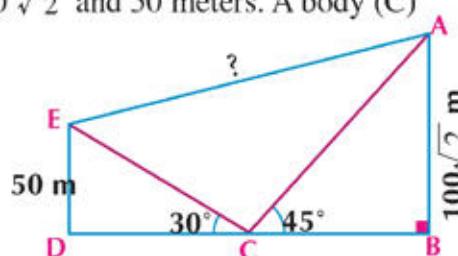
7 From the top of a rock 80 meter heigh, the two angles of depression of the top and base of a tower were measured to give 24° and 35° respectively. Find the height of the tower known that the bases of the rock and tower are at the same horizontal level.

8 From a top of a house, A man observed a car at rest at the same horizontal level of the house to find the measure of the angle of depression is 70° , when the man descends vertically down for a distance of 12 meters, he observed the measure of the angle of depression of the car was 30° . Find the height of the house to the nearest meter and the distance between the car and house.

9 From a point on the ground surface , it is found that the measurement of the angle of elevation of a top of a tree is 50° and from another point distant 45 meters from the previous point and above it exactly, it is found that the measurement of the angle of depression of the top of the tree is 30° . Find the height of the tree to the nearest meter .

10 From the peak of a mountain of height 100 meters above sea level, a man observed the angle of depression of a rock top to find its measurement is $42^\circ 37'$.Find the height of the rock above sea level if it is distant from the mountain 22 meters known that both of them are at the same horizontal land .

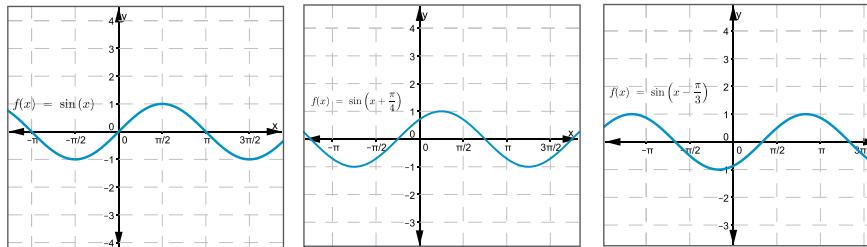
11 Two people moved from the same point and at the same time. The first moved in the direction of 40° west of north at speed of 32 meter/ min and the second moved in the direction of 70° south of west at speed of 38 m/min . Find the distance between them after 5 minutes to the nearest meter .



Think and discuss

Use geogebra to graph the following functions :

$$f(x) = \sin x, y = \sin(x + \frac{\pi}{4}), m(x) = \sin(x - \frac{\pi}{3})$$



What do you notice from your learning to the concept of the geometric transformation?

Notice that the second function shown in the second graph includes the adding of the two angles x and $\frac{\pi}{4}$

and the third function shown in the third graph includes the subtraction of the two angles x and $\frac{\pi}{3}$.

As a result, it was necessary to use the rules of the trigonometric ratios of the sum or difference of two angles in order to find the trigonometric functions of a certain angle. for example, to find the value of $\sin 75^\circ$, we can put it in the form of $\sin(30^\circ + 45^\circ)$, and also $\cos 15^\circ$ can be put in the form of $\cos(60^\circ - 45^\circ)$ or $\cos(45^\circ - 30^\circ)$ and so on....

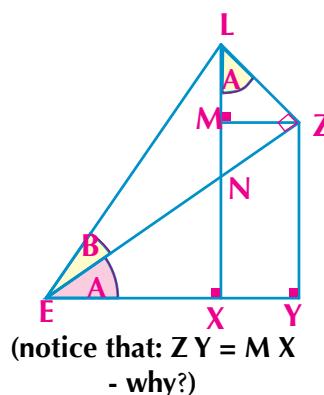
Learn

Trigonometric functions of sum and difference of the measures of two angles

From the opposite figure : (proof is not required)

Notice that $m(\angle A) = m(\angle ZLM)$. Why?

$$\begin{aligned}
 \sin(A + B) &= \frac{LX}{LE} = \frac{MX}{LE} + \frac{LM}{LE} \\
 &= \frac{ZY}{LE} + \frac{LM}{LE} \\
 &= \frac{ZY}{LE} \times \frac{ZE}{ZE} + \frac{LM}{LE} \times \frac{LZ}{LZ} \\
 &= \frac{ZY}{ZE} \times \frac{ZE}{LE} + \frac{LM}{LZ} \times \frac{LZ}{LE} \\
 &= \sin A \times \cos B + \cos A \times \sin B
 \end{aligned}$$



You will learn

- Deduce the trigonometric functions of sum and difference of the measures of two angles.
- Solve various applications on the trigonometric functions of sum and difference of the measures of two angles.
- Use the identities of the sum and difference to prove the correctness of some other identities.

Key terms

- Trigonometric function
- Sine function
- Cosine function
- Tangent function
- Trigonometric functions of sum of the measures of two angles
- Trigonometric functions of difference of the measures of two angles

Materials

- Scientific calculator

Then $\sin(A + B) = \sin A \cos B + \cos A \sin B$

By putting $(-B)$ instead of B , we get:

$$\sin [A + (-B)] = \sin A \cos (-B) + \cos A \sin (-B)$$

$$\sin (A - B) = \sin A \cos B - \cos A \sin B$$

Use the same figures to prove:

$$\cos (A + B) = \cos A \cos B - \sin A \sin B$$

then , we deduce that:

$$\cos (A - B) = \cos A \cos B + \sin A \sin B$$

Example

1 Find:

a $\sin 75^\circ$

b $\cos 15^\circ$

what do you notice?

Solution

a $\sin 75^\circ = \sin (30^\circ + 45^\circ) = \sin 30^\circ \cos 45^\circ + \cos 30^\circ \sin 45^\circ$
 $= \frac{1}{2} \times \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} = \frac{1 + \sqrt{3}}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2} + \sqrt{6}}{4}$

b $\cos 15^\circ = \cos (45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ$
 $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{1 + \sqrt{3}}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2} + \sqrt{6}}{4}$

we notice that: $\sin 75^\circ = \cos 15^\circ$

1 Find.

a $\cos 105^\circ$

b $\sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ$

c $\cos 80^\circ \cos 20^\circ + \sin 80^\circ \sin 20^\circ$

Example

2 If $\sin A = \frac{3}{5}$ where $90^\circ < A < 180^\circ$, $\cos B = \frac{-5}{13}$

where $180^\circ < B < 270^\circ$

find $\cos (A - B)$, $\sin (A + B)$

Remember

$$\sin (-A) = -\sin A$$

$$\cos (-A) = \cos A$$

$$\tan (-A) = -\tan A$$

Solution

$$\because A \in \text{second quadrant} \quad \therefore \sin A = \frac{3}{5} \quad \cos A = -\frac{4}{5}$$

$$\because B \in \text{third quadrant} \quad \therefore \sin B = -\frac{12}{13} \quad \cos B = -\frac{5}{13}$$

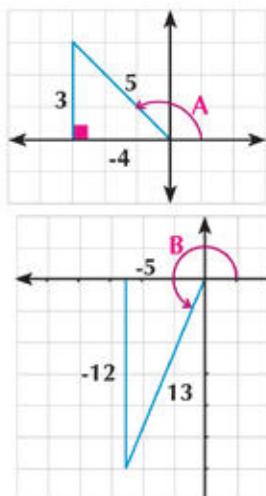
then:

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$= \left(-\frac{4}{5}\right) \left(-\frac{5}{13}\right) + \left(\frac{3}{5}\right) \left(-\frac{12}{13}\right) = -\frac{16}{65}$$

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$= \left(\frac{3}{5}\right) \left(-\frac{5}{13}\right) + \left(-\frac{4}{5}\right) \left(-\frac{12}{13}\right) = \frac{33}{65}$$

**Try to solve**

2) If $\cos A = \frac{4}{5}$ and $\cos B = \frac{12}{13}$ where A and B are the measurement of two acute angles, find without using the calculator:

a) $\sin(A + B)$

b) $\sec(A - B)$

3) In the triangle ABC, $\cos A = -\frac{3}{5}$ and $\sin B = \frac{5}{13}$, Find $\sin C$ without using the calculator.

Example

Electricity: If the electric current intensity is given by the relation: $C = \frac{5}{2} \sin 165^\circ t$

a) Rewrite the previous relation using the sum of measures of two angles.
b) Find the electric current intensity after one second (without using the calculator)

Solution

$$C = \frac{5}{2} \sin 165^\circ t$$

given relation

$$C = \frac{5}{2} \sin(45^\circ t + 120^\circ t)$$

because $165^\circ = 45^\circ + 120^\circ$

$$= \frac{5}{2} \sin(45^\circ + 120^\circ)$$

by substituting $t = 1$ second

$$= \frac{5}{2} [\sin 45^\circ \cos 120^\circ + \cos 45^\circ \sin 120^\circ]$$

using the expansion of the sum of measures of two angles

$$= \frac{5}{2} \left[\frac{1}{\sqrt{2}} \left(-\frac{1}{2}\right) + \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \right]$$

by substituting the values of trigonometric ratios

$$= \frac{5}{2} \times \frac{\sqrt{3}-1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

by multiplying both numerator and denominator $\times \sqrt{2}$

$$= \frac{(\sqrt{6} - \sqrt{2})}{8} \text{ by simplifying}$$

Try to solve

4 If the electric current intensity is given by the relation $C = \frac{3}{2} \cos 285^\circ t$

- Rewrite the previous relation using the difference of measures of two angles.
- Find the electric current intensity after one second (without using the calculator)

Tangent function of sum and difference of the measures of two angles

$$\tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

By dividing the nominator and denominator by $\cos A \cos B \neq 0$, then:

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

when putting $(-B)$ instead of B , then:

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

where A and $B \neq \frac{\pi}{2}(2n + 1)$ and $n \in \mathbb{Z}$

Example

3 Without using the calculator, prove that:

a $\tan 50^\circ = \frac{1 + \tan 5^\circ}{1 - \tan 5^\circ}$

b $\tan(45^\circ - A) = \frac{\cos A - \sin A}{\cos A + \sin A}$

Solution

a The left side = $\tan 50^\circ$

$$= \tan(45^\circ + 5^\circ) = \frac{\tan 45^\circ + \tan 5^\circ}{1 - \tan 45^\circ \tan 5^\circ} = \frac{1 + \tan 5^\circ}{1 - \tan 5^\circ} = \text{the right side}$$

b The left side = $\tan(45^\circ - A)$

$$\begin{aligned} &= \frac{\tan 45^\circ - \tan A}{1 + \tan 45^\circ \tan A} = \frac{1 - \tan A}{1 + \tan A} \\ &= \frac{1 - \frac{\sin A}{\cos A}}{1 + \frac{\sin A}{\cos A}} \times \frac{\cos A}{\cos A} = \frac{\cos A - \sin A}{\cos A + \sin A} = \text{the right side} \end{aligned}$$

Remember

$$\tan A = \frac{\sin A}{\cos A}$$

Try to solve

5 If each of A and B are the measures of two positive acute angles where $\sin A = \frac{12}{13}$, and $\sin B = \frac{4}{5}$, find the value of $\tan(A - B)$

6 If A , B and C are the measures of the angles of a triangle where $\tan B = \frac{4}{3}$, $\tan C = 7$, prove that $A = 45^\circ$

7 If $\tan A = \frac{5}{6}$ and $\tan B = \frac{1}{11}$, prove that $(A + B) = 45^\circ$

Example

4 Find the solution set for each of the following equations where $0^\circ < x < 360^\circ$

a $\tan x + \tan 20^\circ + \tan x \tan 20^\circ = 1$ b $\sin(x + 30^\circ) = 2 \cos x$

Solution

a $\because \tan x + \tan 20^\circ + \tan x \tan 20^\circ = 1$

$$\therefore \tan x + \tan 20^\circ = 1 - \tan x \tan 20^\circ$$

$$\therefore \frac{\tan x + \tan 20^\circ}{1 - \tan x \tan 20^\circ} = 1 \quad (\text{By dividing the two sides of the equation by: } 1 - \tan x \tan 20^\circ)$$

i.e.: $\tan(x + 20^\circ) = 1$

$\therefore x + 20$ lies in the first quadrant

$$\therefore \tan(x + 20^\circ) = \tan 45^\circ \quad x + 20^\circ = 45^\circ \quad x = 25^\circ$$

or $x + 20^\circ$ lies in the third quadrant

$$\tan(x + 20^\circ) = \tan 225^\circ \quad x + 20^\circ = 225^\circ \quad x = 205^\circ$$

Solution set is $\{25^\circ, 205^\circ\}$

b $\because \sin(x + 30^\circ) = 2 \cos x$

$$\therefore \sin x \cos 30^\circ + \cos x \sin 30^\circ = 2 \cos x$$

$$\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x = 2 \cos x$$

$$\frac{\sqrt{3}}{2} \sin x = \frac{3}{2} \cos x$$

By dividing the two sides by $\cos x$, where: $\cos x \neq 0$

$$\therefore \frac{\sin x}{\cos x} = \frac{3}{2} \times \frac{2}{\sqrt{3}} = \sqrt{3} \quad \text{i.e.} \quad \tan x = \sqrt{3} > 0$$

$\therefore x$ lies in the first or third quadrant and

$$x = 60^\circ \quad \text{or} \quad x = 60^\circ + 180^\circ = 240^\circ$$

Solution set is $\{60^\circ, 240^\circ\}$

Try to solve

8 Find the solution set for each of the following equations where $0^\circ < x < 360^\circ$

a $\sin x \cos 20^\circ - \cos x \sin 20^\circ = \frac{1}{2}$

b $\cos 2x \cos x + \sin 2x \sin x = \frac{\sqrt{3}}{2}$

Exercises 4 - 2

Complete:

- 1 $\sin 40^\circ \cos 10^\circ - \cos 40^\circ \sin 10^\circ = \dots$
- 2 $\frac{\tan 75^\circ - \tan 15^\circ}{1 + \tan 75^\circ \tan 15^\circ} = \dots$
- 3 $\cos 70^\circ \cos 20^\circ - \sin 70^\circ \sin 20^\circ = \dots$
- 4 $\sin(X + Y) \cos Y - \cos(X + Y) \sin Y = \dots$
- 5 If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$, then $\tan(A + B) = \dots$

Choose the correct answer:

- 6 $\sin(\theta + \frac{\pi}{6}) =$
 - a $\frac{1}{2}(\cos\theta + \sqrt{3}\sin\theta)$
 - b $\frac{1}{2}(\cos\theta + \sin\theta)$
 - c $\frac{1}{2}(\sqrt{3}\cos\theta + \sin\theta)$
 - d $\frac{1}{2}(\sqrt{3}\cos\theta + \sqrt{2}\sin\theta)$
- 7 $\sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ$ equals
 - a zero
 - b $\frac{1}{2}$
 - c 1
 - d $\frac{\sqrt{3}}{2}$
- 8 $\sin 5x \sin 3x + \cos 5x \cos 3x$ equals
 - a $\cos 2x$
 - b $\cos 8x$
 - c $\sin 8x$
 - d $\sin 2x$
- 9 $\tan 15^\circ$ equals
 - a $2 + \sqrt{3}$
 - b $-\sqrt{3} - 2$
 - c $\sqrt{3} - 2$
 - d $2 - \sqrt{3}$
- 10 If $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$, then $\tan(A + B)$ equals
 - a 1
 - b $-\frac{5}{6}$
 - c $\frac{1}{6}$
 - d $\frac{5}{6}$
- 11 $\cot(2\pi - \frac{5\pi}{12}) =$
 - a $2 + \sqrt{3}$
 - b $2 - \sqrt{3}$
 - c $-2 - \sqrt{3}$
 - d $\sqrt{3} - 2$

Put in the simplest form:

12) $\cos(A - B) - \cos(A + B)$

13) $\sin(A + B) - \sin(A - B)$

14) $\cos A \cos(A + \frac{\pi}{2}) + \sin A \sin(A + \frac{\pi}{2})$

15) $\cos 40^\circ \cos x - \sin 40^\circ \sin x$

16) If you know that $\sin A = \frac{-8}{17}$ where $180^\circ < A < 270^\circ$, $\cos B = \frac{-5}{13}$ where $90^\circ < B < 180^\circ$

Without using the calculator find the values of:

a) $\cos(A - B)$

b) $\sin(A + B)$

c) $\tan(A - B)$

17) If $\tan(\theta + 45^\circ) = \frac{3}{2}$, find the value of $\tan \theta$.

18) If you know that $\frac{\cos(A + B)}{\cos(A - B)} = \frac{1}{3}$, prove that $2\sin A \sin B = \cos A \cos B$

then prove that: $2\tan A = \cot B$ and if you know that $\tan A = \frac{2}{5}$, find $\tan B$, and then find $\tan(A - B)$

19) If A and B are two acute angles where $\tan A = \frac{4}{5}$, $\tan B = \frac{1}{9}$, prove that $A + B = 45^\circ$.

20) If $\cos A = 0.6$, $\cos B = 0.8$, where A and B are the measures of two acute angles,

Find without using the calculator the value for each of the following:

a) $\sin(A + B)$

b) $\cos(A - B)$

c) $\tan(A - B)$

21) If A and B are two acute angles where $\cos A = \frac{3}{5}$ and $\tan B = \frac{8}{15}$, Find without using the calculator the value for each of the following:

a) $\sin(A + B)$

b) $\tan(A - B)$

c) $\sec(A - B)$

d) $\cot(A + B)$

22) If $\sin A \sin B = \frac{1}{2}$ and $\cos A \cos B = \frac{1}{3}$, where A and B are the measures of the acute angles ,

find the value of: $\cos(A + B)$ and $\cos(A - B)$

23) If $\sin A = \frac{3}{5}$ where $0^\circ < A < 90^\circ$ and $\tan B = -7$ where $90^\circ < B < 180^\circ$, prove that $A + B = 135^\circ$

24) If $x + y + z = 90^\circ$, prove that $\tan x \tan y + \tan y \tan z + \tan z \tan x = 1$

25) **Creative thinking:** If $\tan A = \frac{2}{3}$ where $\pi < A < \frac{3\pi}{2}$, $\tan B = \frac{1}{5}$ where $0 < B < \frac{\pi}{2}$,

find the value for each of: $\tan(A + B)$, $\cos(A + B)$, then prove that $A + B = \frac{5\pi}{4}$

4 - 3

You will learn

- ▶ Deduce the trigonometric functions of the double -angle.
- ▶ Deduce the trigonometric functions of the half-angle.
- ▶ Solve various applications on the trigonometric functions of the double -angle
- ▶ Use the identities of the double-angle to prove the correctness of other identities

Key terms

- ▶ Trigonometric function
- ▶ Double - angle
- ▶ Half - angle
- ▶ Sine function
- ▶ Cosine function
- ▶ Tangent function

materials

- ▶ Scientific calculator

Think and discuss

You have already learned the trigonometric functions of the sum and difference of the measures of two angles. Now, we are going to raise a question:

From what you learned in the previous lesson can you deduce the trigonometric functions of the double-angle A if A is the measurement of a given angle?

Discuss with your instructors the answers you reached.

Learn

The trigonometric functions of the double - angle

You know that:

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

(by putting $B = A$)

$$\therefore \sin (A + A) = \sin A \cos A + \cos A \sin A$$

$$\therefore \sin 2A = 2\sin A \cos A \quad \text{for each } A \in \mathbb{R} \quad (1)$$

Similarly:

$$\cos 2A = \cos^2 A - \sin^2 A$$

for each $A \in \mathbb{R}$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} \quad \text{where } \tan A \text{ is defined, } \tan^2 A \neq 1$$

Remember

The basic relations among the trigonometric functions:

$$\sin^2 C + \cos^2 C = 1$$

$$\tan^2 C + 1 = \sec^2 C$$

$$\cot^2 C + 1 = \csc^2 C$$

$$\csc C = \frac{1}{\sin C}$$

$$\sec C = \frac{1}{\cos C}$$

$$\tan C = \frac{\sin C}{\cos C}$$

$$\cot C = \frac{1}{\tan C}$$

$$\tan C = \frac{1}{\cot C}$$

Verbal expression:

- 1- Write the form of the previous rules if we double the angle $2A$ to be $4A$.

Example

Trigonometric identities of the double -angle

- 1 If you know $\sin A = \frac{4}{5}$ where $0^\circ < A < 90^\circ$, find the value for each of the following without using the calculator:

a $\sin 2A$

b $\cos 2A$

c $\tan 2A$

Solution

$$\because \sin A = \frac{4}{5}$$

\therefore A lies in the first quadrant

$$\therefore \cos A = \frac{3}{5}$$

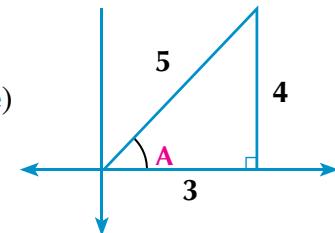
(positive because A is an acute angle)

a $\sin 2A$

$$= 2 \sin A \cos A = 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$$

b $\cos 2C$

$$= 1 - 2 \sin^2 A = 1 - 2 \times \frac{16}{25} = \frac{7}{25}$$



(you can use the other forms of the cosine rule of the double-angle)

c $\tan 2A = \frac{\sin 2A}{\cos 2A} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7}$

Try to solve

1 If $\cos A = \frac{4}{5}$, $0^\circ < A < 90^\circ$, find the values for each of the following without using the calculator:

a $\sin 2A$

b $\cos 2A$

c $\tan 2A$

Example**Trigonometric identities of the double-angle**

2 Find the value for each of the following, without using the calculator, :

a $2 \sin 15^\circ \cos 15^\circ$

b $2 \cos^2 22^\circ 30' - 1$

Solution

a $2 \sin 15^\circ \cos 15^\circ = \sin 2 \times 15^\circ = \sin 30^\circ = \frac{1}{2}$

b $2 \cos^2 22^\circ 30' - 1 = \cos (2 \times 22^\circ 30') = \cos 45^\circ = \frac{1}{\sqrt{2}}$

Try to solve

2 Find the value for each of the following, without using the calculator:

a $2 \sin 22^\circ 30' \cos 22^\circ 30'$

b $2 \cos^2 75^\circ - 1$

c $\cos^2 67.5^\circ - \sin^2 67.5^\circ$

d $\frac{2 \tan 22^\circ 30'}{1 - \tan^2 22^\circ 30'}$

e $\frac{2 \cos^2 165^\circ - 1}{\sin 75^\circ \cos 75^\circ}$

The trigonometric functions of the half-angle**Learn**

You have previously learned that: $\cos A = 1 - 2 \sin^2 \frac{A}{2}$ (identity of double-angle)

I.e.: $2 \sin^2 \frac{A}{2} = 1 - \cos A$

(from the properties of algebraic expressions)

$\sin^2 \frac{A}{2} = \frac{1 - \cos A}{2}$

(By dividing the two sides by 2)

$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$ and similarly, the trigonometric functions can be found for each of: $\cos \frac{A}{2}$ and $\tan \frac{A}{2}$

$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$, $\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$, $\tan \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$ where $\cos A \neq -1$
the sign is determined according to the quadrant at which the angle $\frac{A}{2}$ lies in

Example Trigonometric identities of half-angle

3) Find the value for each of the following Without using the calculator :

a) $\sin \frac{\theta}{2}$ known that, $\sin \theta = -\frac{4}{5}$, $180^\circ < \theta < 270^\circ$ b) $\cos 75^\circ$

c) $\tan 22^\circ 30'$

Solution

a) $\because \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}$
 $\therefore \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - (-\frac{3}{5})}{2}} = \pm \sqrt{\frac{8}{10}}$
 $\therefore \sin \frac{\theta}{2} = \pm \frac{2}{\sqrt{5}} = \pm \frac{2}{5} \sqrt{5}$

$\therefore 180^\circ < \theta < 270^\circ$ by dividing by 2, then $90^\circ < \frac{\theta}{2} < 135^\circ$

$\therefore \sin \frac{\theta}{2} = \frac{2}{5} \sqrt{5}$ (the sign is positive because it lies in the second quadrant)

b) $\cos 75^\circ = \cos \frac{150^\circ}{2}$ (because $75^\circ = \frac{150^\circ}{2}$)

$= \sqrt{\frac{1 + \cos 150^\circ}{2}}$ ($0 < 75^\circ < 90^\circ$) lies in the first quadrant so the value is positive
 $= \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}}$ by multiplying numerator and denominator $\times 2$

$\frac{\sqrt{2 - \sqrt{3}}}{2}$ by simplifying

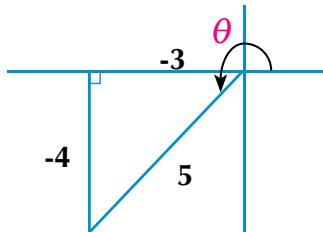
$\frac{\sqrt{2 - \sqrt{3}}}{2} = \frac{\sqrt{\frac{4 - 2\sqrt{3}}{2}}}{2} = \frac{\sqrt{\frac{(\sqrt{3}-1)^2}{2}}}{2}$

$\frac{(\sqrt{3}-1)}{2\sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$

c) $\tan 22^\circ 30' = \tan \frac{45^\circ}{2}$ (because $22.5^\circ = \frac{45^\circ}{2}$)

$= \sqrt{\frac{1 - \cos 45^\circ}{1 + \cos 45^\circ}}$ $0 < (22.5^\circ < 90^\circ)$ it lies in the first quadrant so the value is positive

$= \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{1 + \frac{\sqrt{2}}{2}}} = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}}$ by multiplying by the conjugate of denominator $(2 - \sqrt{2})$



$$\begin{aligned}
 &= \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}} \times \frac{2-\sqrt{2}}{2-\sqrt{2}}} = \sqrt{\frac{(4+2)-4\sqrt{2}}{4-2}} \\
 &= \sqrt{3-2\sqrt{2}} = \sqrt{2-2\sqrt{2}-1} = \sqrt{(\sqrt{2}-1)^2} = \sqrt{2}-1
 \end{aligned}$$

 Try to solve

3) Find the value for each of the following without using the calculator:

a) $\cos \frac{\theta}{2}$ known that $\sin \theta = -\frac{4}{5}$, $180^\circ < \theta < 270^\circ$

b) $\cos 22^\circ 30'$

c) $\tan 15^\circ$.

Example Proving the correctness of a trigonometric identity

4) Prove the correctness of the identity: $\csc 2x + \cot 2x = \cot x$, then use the previous identity to find the value of $\cot 15^\circ$.

 Solution

$$\begin{aligned}
 \text{The left side} &= \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x} = \frac{1 + \cos 2x}{\sin 2x} \\
 &= \frac{1 + (2\cos^2 x - 1)}{2 \sin x \cos x} = \frac{2 \cos^2 x}{2 \sin x \cos x} = \frac{\cos x}{\sin x} = \cot x \text{ (the right side)}
 \end{aligned}$$

By putting $x = 15^\circ$ in the identity: $\csc 2x + \cot 2x = \cot x$

$$\therefore \cot 15^\circ = \csc 30^\circ + \cot 30^\circ = 2 + \sqrt{3}$$

 Try to solve

4) Prove that: $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ then find the value of $\frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ}$

Example Finding the value of a trigonometric ratio

5) If $4 \cos 2C + 3 \sin 2C = 0$, find without using the calculator the value of $\tan C$, where C is the measurement of a positive acute angle.

 Solution

$$\therefore 4 \cos 2C + 3 \sin 2C = 0 \quad \therefore 4 \cos 2C = -3 \sin 2C$$

$$\therefore \frac{\sin 2C}{\cos 2C} = \frac{4}{-3} \quad \therefore \tan 2C = \frac{4}{-3}$$

$$\therefore \frac{2 \tan C}{1 - \tan^2 C} = \frac{-4}{3} \quad \therefore 6 \tan C = -4 + 4 \tan^2 C$$

$$\therefore 2 \tan^2 C - 3 \tan C - 2 = 0$$

$$(2 \tan C + 1)(\tan C - 2) = 0 \quad \therefore \tan C = -\frac{1}{2} \text{ (refused) or } \tan C = 2$$

Think: Use the trigonometric functions of half-angle to find the value of $\tan C$.

 Try to solve

5) If $4 \sin E + 3 \cos E = 3$, prove without using the calculator that $\tan \frac{E}{2} = \frac{4}{3}$, Where E is the measurement of a positive acute angle.

Example Solving the trigonometric equations

6) Find the values of x included between 0 and 2π which satisfy the following equations:

a) $\sin 2x = \sin x$

b) $\cos^2 x - \sin^2 x = -\frac{1}{2}$

c) $\tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} = 1$

Solution

a) $\because \sin 2x = \sin x$

$2 \sin x \cos x = \sin x$

(because: $\sin 2x = 2 \sin x \cos x$)

$\sin x (2 \cos x - 1) = 0$

$\sin x = 0$

$x = \pi$

the values of x which satisfy

the equation are:

$\frac{\pi}{3}, \pi$ or $\frac{5\pi}{3}$

$\cos x = \frac{1}{2}$

$x = \frac{\pi}{3}$ or $x = \frac{5\pi}{3}$

b) $\cos^2 x - \sin^2 x = -\frac{1}{2}$

$\cos 2x = -\frac{1}{2}$

(because: $\cos 2x = \cos^2 x - \sin^2 x$)

either $\cos 2x = \cos (\frac{2\pi}{3} + 2n\pi)$

or $\cos x = \cos (\frac{4\pi}{3} + 2n\pi)$

where $n \in \mathbb{Z}$

$2x = \frac{2\pi}{3} + 2n\pi$

$2x = \frac{4\pi}{3} + 2n\pi$

By dividing by (2)

$x = \frac{\pi}{3} + n\pi$ or $x = \frac{2\pi}{3} + n\pi$

by putting $n=0, 1$:

$x = \frac{\pi}{3}$: $x = \frac{4\pi}{3}$

$x = \frac{2\pi}{3}$: $x = \frac{5\pi}{3}$

the values of x which satisfy the equation are:

$\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$

think: Do you have other solutions? Find one of them.

c) $\because \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} = 1$

$\therefore 2 \tan \frac{x}{2} = 1 - \tan^2 \frac{x}{2}$

$\therefore \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}} = 1$ $\therefore \tan x = 1$

(positive tangent in both the first and third quadrants)

in the first quadrant: $x = \frac{\pi}{4}$

in the third quadrant: $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$

\therefore the values of x which satisfy the equation are $\frac{\pi}{4}$ or $\frac{5\pi}{4}$

Try to solve

6) Find the values of x included between 0 and 2π which satisfy the equation $\cos x + \cos 2x = 0$

7) **Geometry:** XYZ is a triangle in which x = 12cm, y = 18cm, z = 15cm, prove that $m(\angle Y) = 2m(\angle X)$.

Exercises 4 - 3

Choose the correct answer:

1 If $\cos C = \frac{1}{3}$, then $\cos 2C$ equals
 a 0 b $-\frac{2}{3}$ c $-\frac{7}{9}$ d $\frac{2}{3}$

2 $\sin A \cos A$ equals
 a $\frac{1}{2} \sin 2A$ b $\sin 2A$ c $\cos 2A$ d $\frac{1}{2} \cos 2A$

3 $\cos^2 C - \cos 2C$ equals
 a $\sin C$ b $\cos C$ c $\sin^2 C$ d $\tan C$

4 $1 - 2 \sin^2 50$ equals
 a $\sin 100^\circ$ b $\cos 50^\circ$ c $\cos 100^\circ$ d $\sin 50^\circ$

5 $1 + \cos 4A$ equals
 a $2 \cos^2 4A$ b $\cos^2 2A$ c $\cos^2 4A$ d $2 \cos^2 2A$

6 Find without using the calculator the values of: $\sin 2\theta$, $\cos 2\theta$, $\tan 2\theta$ if:
 a $\sin \theta = \frac{4}{5}$, $0^\circ < \theta < 90^\circ$ b $\cos \theta = \frac{1}{3}$, $0^\circ < \theta < \frac{\pi}{2}$
 c $\csc \theta = \frac{5}{3}$, $\pi < \theta < \frac{3\pi}{2}$ d $\cot \theta = \frac{3}{2}$, $180^\circ < \theta < 270^\circ$

7 Find without using the calculator the values of: $\sin 2\theta$, $\cos 2\theta$, $\sin \frac{\theta}{2}$, $\cos \frac{\theta}{2}$:
 a $\cos \theta = \frac{1}{4}$, $0^\circ < \theta < 90^\circ$ b $\sin \theta = \frac{3}{5}$, $90^\circ < \theta < 180^\circ$
 c $\tan \theta = \frac{4}{3}$, $\pi < \theta < \frac{3\pi}{2}$ d $\sin \theta = \frac{15}{17}$, $\frac{3\pi}{2} < \theta < 2\pi$

8 If you know that $\cos A = \frac{5}{13}$, where A is measure of a positive acute angle, find without using the calculator the value of:
 $\sin 2A$, $\cos 2A$, $\tan 2A$, $\cos \frac{A}{2}$

9 If A is the measurement of an acute angle and $\cos 2A = \frac{119}{169}$, without using the calculator, find the value of: $\sin A$, $\cos A$, $\tan 2A$

10 If $\sin \frac{A}{2} = \frac{1}{3}$, without using the calculator, find the value of: $\cos \frac{A}{2}$, $\sin A$, $\cos A$

11 If $\cos B = \frac{-4}{5}$, $\pi < B < \frac{3\pi}{2}$, without using the calculator, find the value of $\frac{\sin 2B}{2 \cos 2B}$

12 Express each of the following in the form of an only trigonometric ratio:

a $\sin 35^\circ \cos 35^\circ$

b $\frac{\tan 40^\circ}{1 - \tan^2 40^\circ}$

c $\sin 25^\circ \cos 35^\circ - \cos 25^\circ \sin 35^\circ$

d $\frac{\tan 50^\circ - \tan 40^\circ}{1 + \tan 50^\circ \tan 40^\circ}$

e $\cos^2 25^\circ - \sin^2 25^\circ$

f $\frac{1 - \cos \theta + \sin \theta}{1 + \cos \theta + \sin \theta}$

13 Find the values of X included between 0° and 2π which satisfy each of the following equation:

a $\sin 2x = \sin x$

b $\sin^2 2x + 2 \sin 2x + 1 = 0$

c $\cos x - 2 \sin^2 \frac{1}{2}x = 0$

14 Prove the correctness for each of the following identities:

a $\frac{1 - \cos 2A}{3 + \cos 2A} = \frac{\sin^2 A}{1 + \cos^2 A}$

b $\frac{\cot \theta - 1}{\cot \theta + 1} = \frac{\cos 2\theta}{1 + \sin 2\theta}$

First : problems on Angles of elevation and depression

- 1 A man observed the angle of elevation of a tower peak from a point on the ground surface to find its measurement is 22° , then he walked on a horizontal road towards the tower base for a distance of 50 meters to observe the angle of elevation of the tower peak once more to find its measurement is 36° . Find the height of the tower to the nearest meter.
- 2 From a hill peak, an observer found the measurement of the two angles of depression of a tower peak and its base are $15^\circ 18'$ and $26^\circ 42'$ respectively. If the height of the tower is 20 meters, find the height of the hill to the nearest meter .
- 3 From tower peak of 10 meters high, a man measured the two angles of elevation and depression of the highest and the lowest points of a minaret on the ground surface to find them $14^\circ 28'$ and 42° respectively. If the height of the tower and minaret were founded at the same horizontal level, calculate the height of the minaret to the nearest meters.
- 4 **Marine navigation** A ship sails Northeast at velocity of 24km/h. A passenger observed two constant points 25° in the direction of west of the North and after four hours, he found that one of those two points became 23° in the direction of South of the west while the other point became 17° in the direction of North of the west. Find the distance between the two points to the nearest kilometer known that the two points and the passenger are at the same horizontal level.
- 5 **Marine navigation** A steam boat sails on water in a straight line in the direction of a rock at a uniform velocity of 300 m/min. At a certain time, the angle of elevation of the rock peak was observed to be measured 35° and after two minutes and from the same boat, the angle of elevation was observed once again to be measured 60° . Calculate the height of the rock.
- 6 **Marine navigation** A ship salied from a certain point in the direction of 12° south of the **East** at velocity of 11 km/h and at the same time, another ship sailed from the same point in the direction of 68° North of the east at velocity of 6.5 km/h. Find the distance between the two ships after two hours from the time of their sailing together .
- 7 From a horizontal point on the ground surface, a man observed the angle of elevation of an airship moves vertically at a uniform velocity of a magnitude of 20m/min to find its measurement to be 35° and after three minutes, he observed the airship once again at the same point to find the measure of the angle of elevation of the airship is 15° . Find the distance between the man and the projection of the airship to the nearest meter .

Second: problems on the trigonometric functions of the sum and difference of measures of two angles and the double - angle

- 1 Without using the calculator , prove the correctness for each of the following:

a $\tan 75^\circ = 2 + \sqrt{3}$

b
$$\frac{\cos 40^\circ \cos 10^\circ + \sin 40^\circ \sin 10^\circ}{\sin 15^\circ \cos 15^\circ} = 2\sqrt{3}$$

c $\cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$

2) Prove the correctness for each of the following:

a) $\cos^2 A = \frac{1}{2}(1 + \cos 2A)$, then find the value of $\cos 15^\circ$

b) $\frac{2\sin A - \cos 2A}{\sin^2 A} = \sec^2 \frac{A}{2}$ c) $\frac{\sin 2x}{1 + \cos 2x} = \tan x$ d) $\frac{1 - \cos C - \sin C}{1 - \cos C + \sin C} = \tan \frac{C}{2}$

3) Find the value for each of the following, without using the calculator:

a) $\sin \frac{2\pi}{3} \cos \frac{\pi}{6} - \cos \frac{2\pi}{3} \sin \frac{\pi}{6}$

b) $\frac{\sin 25^\circ \cos 20^\circ + \cos 25^\circ \sin 20^\circ}{\sin 80^\circ \cos 35^\circ + \cos 80^\circ \sin 35^\circ}$

4) If $\sin A = \frac{-12}{13}$ where $\frac{3\pi}{2} < A < 2\pi$ without using the calculator find the value of $\sin 2A$, $\cos 2A$

5) If $\tan A = \frac{1}{3}$ where $0 < A < \frac{\pi}{3}$ without using the calculator find the value of $\frac{1 + \sin 2A}{1 + \cos 2A}$

6) If $\sin C = \frac{5}{13}$ where $\frac{\pi}{2} < C < \pi$, $\cos B = \frac{4}{5}$ where $\pi < B < \frac{3\pi}{2}$ without using the calculator find the value of: $\tan 2A$, $\sin(B - A)$

7) If $\cos C = \frac{3}{4}$ where $C \in]0, \frac{\pi}{3}[$, $\tan B = \frac{-12}{5}$ where $B \in]\frac{\pi}{3}, \pi[$, without using the calculator find the value of: $\cos(A + B)$, $\tan 2B$

8) If $\tan 2A = \frac{3}{4}$, without using the calculator find the value of $\tan A$

9) If $\tan A = \frac{1}{7}$, $\tan B = \frac{1}{3}$ where $A, B \in]0, \frac{\pi}{3}[$ without using the calculator find the value of: $\tan(A + 2B) = 1$

10) If $\sin A = \frac{4}{5}$ where $A \in]0, \frac{\pi}{2}[$, $\cot B = \frac{5}{12}$ where $B \in]\pi, \frac{3\pi}{2}[$ without using the calculator find the value of: $\tan(A - B)$, $\sin 2B$