

الكيميــاء 2026

ا<mark>لصف الثاني الثانوي</mark> الفصل الدراسي الأول

الواجب المنزلـــى

الأسبوع 2

إعداد:

اً. سامح منصور

ا. عبدالله عبدالواحد

مستشار مادة العلوم:

د. عزيزة رجب خليفة

رئيس الإدارة المركزية للتعليم العام:

د. ھالة عبدالسلام خفاجي

الاداء المنزلي (الأسبوع الثاني)

أختر الاجابة الصحيحة:-

1- احسب حجم غاز ثانى أكسيد الكربون الناتج عن خلط 20g من غاز أول أكسيد الكربون مع كمية وفيرة من غاز الأكسجين عند الظروف القيلاسية من الضغط و درجة الحرارة (STP) وفقًا للمعادلة التالية:

$$\begin{array}{c} \text{2CO}_{\text{(g)}} + \text{O}_{\text{2(g)}} \rightarrow \text{2CO}_{\text{2(g)}} \\ \text{[C=12 g/mol, O=16 g/mol]} \end{array}$$

45 L (أ) 8 L (ب)

(د) 16 ل

(ج) 23 L

۲- عدد المولات من غاز يشغل حجم مقداره 4L عند ٢٥ 25°C و 1atm .

(ب) 0.93 moles

(ج) 0.17 moles

0.18 moles (i)

(د) 8.96 moles ٣- احسب كتلة غاز الأكسجين اللازمة لتتفاعل تماما مع 2.93×10²¹ ذرة من الماغنسيوم لتحضير أكسيد

[O=16g/mol, Mg=24g/mol]

الماغنسيوم ؟ 2.68×10⁻² g (أ)

(ب) 6.18×10⁻⁴ g (د) 7.78×10⁻² g

(ج) 1.56×10⁻¹ g

٤- يحترق غاز البروبان (C3H8) تماما في كمية و فيرة من غاز الأكسجين (O2) وفقا للمعادلة التالية:

 $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}$

اذا علمت أن g 11.0 من غاز البروبان احترقت تماما ، فإن حجم غاز ثاني أكسيد الكربون الناتج عند (rt<mark>p) يساوى</mark>

(ب) 30 L

30 cm³ (أ)

(د) 55L

(ج) 18 L

 ٥ - يتم الكشف عن أيون الفوسفات في ملحه الصوديومي باستخدام محلول نترات الفضة وفقًا للمعادلة $Na_3PO_{4(aq)} + 3AgNO_{3(aq)} \rightarrow 3NaNO_{3(aq)} + Ag_3PO_{4(s)}$ التالية:

- إذا بدأت بعينة نقية من ملح فوسفات الصوديوم كتلتها 5g ، احسب كتلة الراسب المتكون؟ $[Na_3PO_4 = 164 \text{ g/mol}, AgNO_3 = 170 \text{g/mol}, NaNO_3 = 85 \text{g/mol}, Ag_3PO_4 = 419 \text{g/mol}]$

(ب) 12.32 g

12.77 g (Ĭ)

(د) 5.00 g

(ج) 1.95g

٦- يتفاعل غاز الميثان مع غاز الأكسجين وفقا للمعادلة الأتية:

 $CH_{4 (g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(v)}$

- اذا اضيف 60g من غاز الأكسجين إلى 20g من غاز الميثان في اناء مغلق ، فإن كتل الغازات و الابخرة في الاناء عند نهاية التفاعل =.....

100 g (Ĭ)

46.25 g (ب)

(ج) 5g

(د) 80 g

7- يتم اختزال أكسيد الحديد (١١١)باستخدام غاز أول أكسيد الكربون وفقا للمعادلة التالية:

 $Fe_2O_{3(s)} + 3CO_{(g)} \rightarrowFe_{(s)} +CO_{2(g)}$

1 atm و 273°K زن المعادلة السابقة ثم احسب حجم غاز ثاني أكسيد الكربون المتصاعد عند $^\circ$ 1.68 g و الناتج من تفاعل $^\circ$ 1.6 g من أكسيد الحديد(III) مع $^\circ$ 1.68 g من تفاعل $^\circ$ 1.6 g من أكسيد الحديد(Fe = 56 , O=16 , C=12)

0.672 L (أ)

(ب) 1.344 L

0.224 L (ج)

(د) 67.2L

٨- تفاعل التعا<mark>دل</mark> بين هيدروكسيد الصوديوم وحمض الكبريتيك يتم وفقًا للمعادلة: -

 $2NaOH_{(aq)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(aq)} + 2H_2O_{(1)}$

- إذا أضيف g 80 من هيدروكسيد الصو<mark>ديوم إلى g 49 من حمض</mark> الكبريتيك، فأي مما يلي يع<mark>بر</mark> عن المو<mark>اد المذابة الماء عند نهاية التفاعل؟</mark>

في الم<mark>اء</mark> في نهاية التفاع<mark>ل؟</mark>

(أ) هي<mark>درو</mark>كسيد الصودي<mark>وم</mark> وكبريتات الصوديوم

(ب) حمض الكبريتيك وكبريتات الصوديوم

(ج) ه<mark>يد</mark>روكسيد الصو<mark>د</mark>يوم وحمض الكبريتيك

(د) هيدروكسيد الصوديوم وكبريتات الصوديوم وحمض الكبريتيك

٩- يمكن تحضير غاز النشادر (NH₃) من عنصريه ، غاز النيتروجين (N₂) و غاز الهيدروجين (H₂)

- كم جرام من غاز النيتروجين تلزم لتحضير L 72 من غاز الأمونيا عند STP ؟

(N=14 g/mol, H=1 g/mol)

أ) 35.99 g (أ**)**

(ب) 33.60 g

42.00 g (ج)

(د) 44.99 g

١٠ - أحسب كتلة فلز الألومنيوم التي يمكن أن تتأكسد تماما بـ 44.8L من غاز الأكسجين عند STP و فقا للمعادلة التالية :

 $4AI_{(s)} + 3 O_{2(g)} \rightarrow 2AI_2O_{3(s)}$ [Al=27, O = 16]

54 gm (l)

(ب) 108 gm

(ج) 27 gm

(د) 72 gm

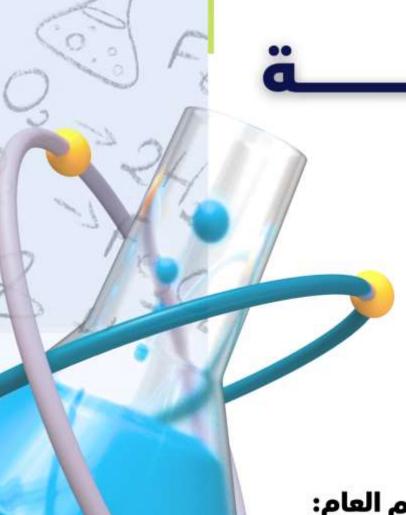
الكيميساء 2026

الصف الثاني الثانوي الفصل الدراسي الأول

التقييمات الأسبوعيــــــة

الأسبوع 2

إعداد:


- اً. سامح منصور
- ا. عبدالله عبدالواحد

مستشار مادة العلوم:

د. عزيزة رجب خليفة

رئيس الإدارة المركزية للتعليم العام:

د. هالة عبدالسلام خفاجي

التقييم الأسبوعي (الأسبوع الثاني)

السؤال (١):-

	- اليوريا سماد له أهمية خاصة في الزراعة ، يتم تحضيره صناعياً من تفاعل غاز الأمونيا (NH₃) وغاز ثاني أكسيد الكربون (CO₂) وفقاً للمعادلة غير المتوازنة التالية:
	- $NH_{3(g)} + CO_{2(g)} \rightarrow CO(NH_2)_{2(s)} + H_2O_{(l)}$
_	(Atomic Masses: N=14.0 g/mol, C=12.0 g/mol, O=16.0 g/mol, H=1.0 g/mol)
	ر المع المع المع المع المع المع المع المع
	ا كسيد الكربون (CO ₂).
	۱. زن المعادلة الكيميائية.
	٢. استنتج العامل المحدد للتفاعل.
	٣. احسب كتلة اليوريا [CO(NH₂)₂] (بالكيلوجرام) التي يمكن انتاجها من هذا ال <mark>تف</mark> اعل.
	۱. احسب عند اليورو [۱۳۵/۱۷۱۱] (بعد يوجرام) التي يمكن العاجها من هذا العقاض.
	 احسب كتلة المادة المتبقية من المتفاعل الأخر (بالكيلوجرام)
	(\frac{1}{2}, \frac{1}{2}, \frac
	السؤال (۲):-
	- قام أحد الطلاب باجراء تجربة لتحضير أكسيد الحديد [[[(Fe ₂ O ₃)) عن طريق تفاعل فلز الحديد
	- قام أ <mark>حد</mark> الطلاب بإجراء تجربة لتحضير أكسيد الحديد III (Fe₂O₃)) عن طريق تفاعل فلز الحديد (Fe) مع غاز الأكسجين (O₂) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة:
	(Fe) مع غاز الأكسجين (O₂) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة:
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $AFe_{(s)} + 3O_{2(g)} \longrightarrow 2Fe_2O_{3(s)}$
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)} + 3O_{2(g)} \longrightarrow 2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع ٤٠٤٨ لترًا من غاز الأكسجين (O_2)
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)}+3O_{2(g)}\rightarrow2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع 1 كنرًا من غاز الأكسجين 1 atm المقاس عند 100 و 1 عند 100
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع 1 لترًا من غاز الأكسجين 1 atm المقاس عند 1 1 1 1 1 1 1 1 1 1
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)}+3O_{2(g)}\rightarrow2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع 1 كنرًا من غاز الأكسجين 1 atm المقاس عند 100 و 1 عند 100
	مع غاز الأكسجين (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع 1 لترًا من غاز الأكسجين 1 atm المقاس عند 1 1 1 1 1 1 1 1 1 1
	وقعًا للمعادلة المتزنة: (O_2) عند درجة حرارة عالية. وفقًا للمعادلة المتزنة: $4Fe_{(s)}+3O_{2(g)} \longrightarrow 2Fe_2O_{3(s)}$ - بدأ الطالب بـ $11.17g$ من فلز الحديد الصلب (Fe) ليفاعل مع 1 لترًا من غاز الأكسجين 1 atm المقاس عند 1 1 1 1 1 1 1 1 1 1

سؤال (3):-

من كربونات	زم لإتمام التفاعل مع عينة g	إذا علمت أن g 7.3 من حمض الهيدروكلوريك تلز	
		الكالسيوم، وفقًا للمعادلة غير المتزنة التالية:	
	$aCO_{2} \leftrightarrow HCI_{4} \rightarrow CaC$	'lac > + HaO(x) + COa(>	

· CaCl_{2(aq)} + H₂O_(I) + CO_{2(g)} ١- حدد ما إذا كانت العينة نقية أم غير نقية.

7- احسب حجم غاز ثاني أكسيد الكربون المتصاعد عند X °298 و 760 mmHg

عسب كتلة الشوائب في العينة إذا وج<mark>دت.</mark>

يؤال (٤):-

أ<mark>ما</mark>مك أربعة بالو<mark>نا</mark>ت تحتوي على غازات مختلفة في نفس الظروف من درجة ا<mark>لح</mark>رارة والضغط<mark>،</mark> ادرس الشكل جيدًا ثم أجب.

١ - حدد أرقام البالونا<mark>ت التي تحتوي على نفس عدد جزيئات الغاز.</mark>

٢- إذا علمت أن حجم البالون (٢) ضعف حجم البالون (٣)، حدد النسبة بين عدد الجزيئات وعدد الذرات في البالونين على التوالي، مع التفسير.

٣- إذا علمت أن أن حجم البالون (١) 4.48L عند 25°C و 760 mmHg، احسب حجم غاز البالون (٢) اللازم للتفاعل تماما مع الغاز الموجود في البالون (١)؟

لسؤال (5):-

يتم تحضير غاز الأمونيا (NH_3) من تفاعل غاز النيتروجين (N_2) و غاز الهيدروجين (H_2):	•
- ما عدد جرامات غاز النيتروجين اللازمة لتحضير ٧٢ لترًا من غاز النشادر عند STP ؟	
(N=14 g/mol, H=1 g/mol)	

(N=14 g/mol, H=1 g/mol)
السؤال (6):- يتم التفاعل بين فلز الألومنيوم (AI) وغاز الكلور ($_{12}$) لإنتاج كلوريد الألومنيوم (AICl $_{3}$) وفقًا للمعادلة التالية: $2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$ - قام كيميائي بخلط g 20 من الألومنيوم (AI) مع g 30 من غاز الكلور ($_{12}$) في وعاء التفاعل. 1
٢-احسب كتلة الناتج (بالجرام).

