

Physics

Second Secondary Grade

20
26

Home Work

Week

15

Name:
Class:
School:

إعداد

عبد الله مصطفى - حسن أشرف

مراجعة

محمد عنتر - مجدي فتحي
عمرو مالي

مكتب مستشار العلوم

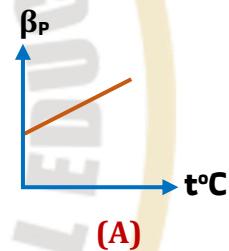
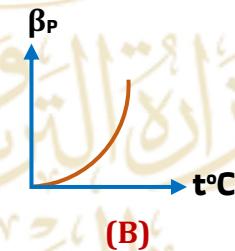
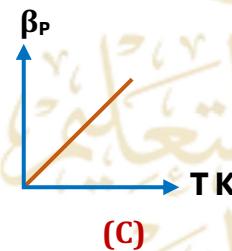
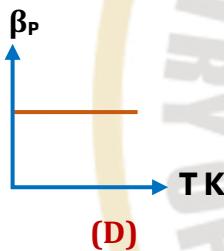
عبد الله مصطفى - سعيد محمد

إشراف

د/ عزيزة رجب خليفة
مستشار العلوم

إشراف عام

د/ هالة عبد السلام
رئيس الإدارة المركزية للتعليم العام

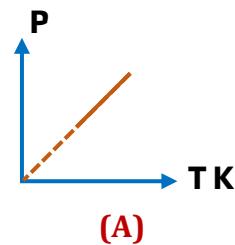
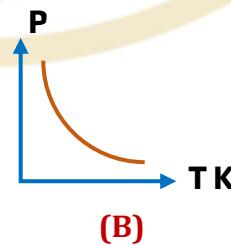
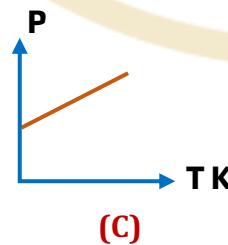
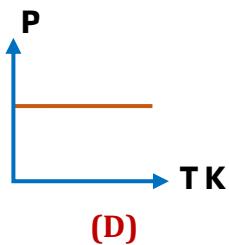




Chapter 6 | Pressure Law and The General Gas Law

First: Multiple Choice Questions

1) A rigid container contains a quantity of dry oxygen gas. Its pressure is **72 cm Hg** at a temperature of **7 °C**. The pressure of the gas at **87 °C** becomes equal to:

(A) **894.85 cm Hg**
(B) **92.571 cm Hg**
(C) **94.212 cm Hg**
(D) **487.234 cm Hg**

2) The graph that represents the relationship between the absolute temperature of a gas and the coefficient of increase of its pressure at constant volume is:





3) The correct mathematical expression that relates the temperature of a fixed mass of gas on the Celsius scale to its pressure at constant volume is:

$$\frac{P_1}{P_2} = \frac{1+\beta_P t_2}{1+\beta_P t_1} \quad (\text{D})$$

$$\frac{P_1}{P_2} = \frac{t_1}{t_2} \quad (\text{C})$$

$$\frac{P_1}{P_2} = \frac{1+\beta_P t_1}{1+\beta_P t_2} \quad (\text{B})$$

$$\frac{P_1}{P_2} = \frac{t_2}{t_1} \quad (\text{A})$$

Second: Essay Questions

- The end -

Physics

Second Secondary Grade

Weekly Assessment

Week

15

20
26

Name:
Class:
School:

إعداد

عبد الله مصطفى - حسن أشرف

مراجعة

محمد عنتر - مجدي فتحي
عمرو مالي

مكتب مستشار العلوم

عبد الله مصطفى - سعيد محمد

إشراف

د/ عزيزة رجب خليفة
مستشار العلوم

إشراف عام

د/ هالة عبد السلام
رئيس الإدارة المركزية للتعليم العام

Chapter 6| Pressure law and The General Gas law**Group (A)****First: Multiple Choice Questions**

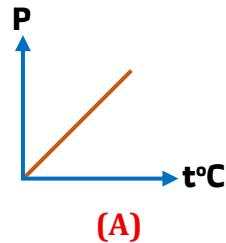
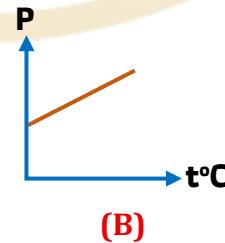
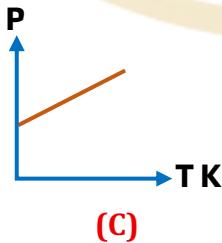
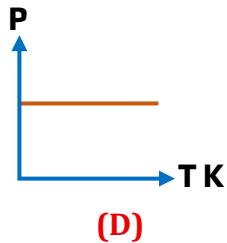
1) A container contains a confined gas at a pressure of **150 cm Hg** and a temperature of **25 °C**. If the pressure of the gas decreases to become equal to the atmospheric pressure, the percentage decrease in the temperature of the gas on the Kelvin scale equals
($P_a = 76 \text{ cm Hg}$)
(A) 49.1%
(B) 49.5%
(C) 49.3%
(D) 49.7%

2) A gas has a pressure of **0.5 atm** at a temperature of **35 °C**. Its pressure at a temperature of **85 °C** is equal to:
(A) 48.08 cm Hg
(B) $5.89 \times 10^4 \text{ N/m}^2$
(C) **0.62 atm**
(D) 440.8 mm Hg

3) A quantity of gas is at a temperature of **30 °C**. Its pressure becomes double its initial value at a temperature of:
(A) **15 °C**
(B) **60 °C**
(C) **333 °C**
(D) **606 °C**

4) A mass of oxygen gas occupies a volume of 550 L at a temperature of 5°C and under a pressure of $1.013 \times 10^5 \text{ N/m}^2$. The volume at a temperature of 30°C and under a pressure of $1.066 \times 10^5 \text{ N/m}^2$ equals

(A) 450.23 L
(B) 562.4 L
(C) 569.66 L
(D) 652.2 L





Second: Essay Questions

5) A quantity of gas has a pressure of 75 cm Hg at a temperature of 0°C . Calculate its pressure at 91°C , given that its volume remains constant.

Group (B)

First: Multiple Choice Questions

1) The correct graph that represents the relationship between the pressure of a fixed mass of gas and its temperature at constant volume is:

2) A steel tank contains carbon dioxide gas at a temperature of $0\text{ }^{\circ}\text{C}$ and under a pressure of $1.2 \times 10^6\text{ Pa}$. The pressure of the gas when it is heated to $100\text{ }^{\circ}\text{C}$ equals

(A) $1.6 \times 10^5\text{ Pa}$
(B) $2.3 \times 10^6\text{ Pa}$
(C) $1.64 \times 10^6\text{ Pa}$
(D) $1.6 \times 10^4\text{ Pa}$

3) A butane gas cylinder is designed to withstand a maximum pressure of **15 atm**. If the pressure of the gas inside the cylinder is **2 atm** at **$50\text{ }^{\circ}\text{C}$** , the minimum temperature at which the cylinder would burst, assuming the volume remains constant equals

(A) $130.75\text{ }^{\circ}\text{C}$
(B) $131\text{ }^{\circ}\text{C}$
(C) $403.75\text{ }^{\circ}\text{C}$
(D) $404\text{ }^{\circ}\text{C}$

4) **5 L** of nitrogen gas at a temperature of **$7\text{ }^{\circ}\text{C}$** and a pressure of **70 cm Hg** is mixed with **12 L** of oxygen gas at a temperature of **$27\text{ }^{\circ}\text{C}$** and a pressure of **80 cm Hg**. The gas mixture is then placed in a container of volume **20 L** at a temperature of **$127\text{ }^{\circ}\text{C}$** . The pressure of the gas mixture equals

(A) 75 cm Hg
(B) 86 cm Hg
(C) 89 cm Hg
(D) 98.2 cm Hg

Second: Essay Questions

5) A quantity of gas occupies a volume of **550 L** at a temperature of **5 °C** and a pressure of **1 Pa**.

Calculate the volume of this gas at a temperature of **30 °C** and a pressure of **5.065×10^5 Pa**.

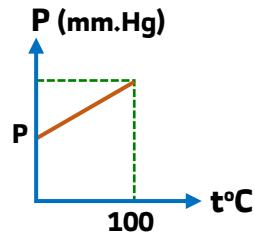
Group (C)

First: Multiple Choice Questions

1) A quantity of gas is enclosed in a sealed container at a temperature of **0 °C**. When its temperature is increased by **100 °C**, its pressure becomes double its initial value.

The coefficient of increase of pressure is equal to:

- (A) 273 K^{-1}
- (B) 0.00366 K^{-1}
- (C) 373 K^{-1}
- (D) 0.00268 K^{-1}


2) A quantity of gas is contained in a uniform cross-section vessel at a pressure of **5 atm** and a temperature of **t °C**. If its temperature is increased by **10%**, its pressure becomes:

- (A) 4.45 atm
- (B) 0.5 atm
- (C) 5.5 atm
- (D) 50 atm

3) The opposite graph represents the relationship between the pressure of a quantity of gas and its Celsius temperature. According to the graph, the pressure of the gas at 100°C is equal to:

- (A) 0.52 P
- (B) 0.64 P
- (C) 0.73 P
- (D) 1.36 P

4) Under standard temperature and pressure (S.T.P.), which of the following statements is correct?

- (A) Pressure = 1 atm, temperature = 0°C , and the molar volume of a gas = 22.4 L
- (B) Pressure = 76 cm Hg, temperature = 273 K, and the molar volume of a gas = $22.4 \times 10^{-3} \text{ m}^3$
- (C) Pressure = 1 atm, temperature = -273 K , and the molar volume of a gas = 22.4 L
- (D) Pressure = 0.76 m Hg, temperature = 273 K, and the molar volume of a gas = $22.4 \times 10^{-3} \text{ m}^3$

Second: Essay Questions

5) A thin-walled glass bulb contains a gas at a temperature of -23°C , and the pressure of the gas inside it is 75 cm Hg. Determine the maximum temperature to which the bulb can be heated without bursting, given that the maximum pressure the walls can withstand is 117 cm Hg.

– The end –