

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السيلام خفاجى اشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج تطبيقات الرياضيات لغات

للصف الثاني الثانوي "علمي" الفصل الدراسي الأول للعام الدراسي 2025 / 2026

الأسبوع الأول

مراجعة أ/ محمود السيد

إعداد أ/ محمد عبد العاطي

ترجمة أ/ محمود سليمان نظيم

مراجعة الترجمة أ/ شريف البرهامي

Classroom Performance (First Week) - Mathematics Applications

- (1) Two forces of magnitude 4, 8 Newton act on a point and form an angle of 120° between them. Find the magnitude of their resultant.
- (2) Two forces act on a point. If their maximum resultant is 54 kg. wt and their minimum resultant is 18 kg.wt, find the magnitude of each force.
- (3) Two forces act on a point. If the magnitude of the first force is 6 Newton and acts in East direction, and the magnitude of the second force is $6\sqrt{2}$ Newton and acts in a North Western direction, calculate the magnitude of the resultant.
- (4) Two forces of magnitude 2F , 3F Newton and the magnitude of their resultant is $\sqrt{13}$ F Newton. Find the measure of the angle between the two forces.
- (5) Two perpendicular forces 6 and 8 gm.wt, find the magnitude and direction of their resultant.
- (6) Two forces of magnitude 9, 18 Newton act on a point and their resultant is perpendicular to the first force. Find the measure of the angle between them.
- (7) Two perpendicular forces $\overline{F_1}$, $\overline{F_2}$ Newton act at a point. Their resultant magnitude is 16 Newton and makes an angle of 30° with $\overline{F_1}$. Find the magnitude of each of the two forces $\overline{F_1}$, $\overline{F_2}$.

- (8) Two forces of equal magnitude meet at a point, and their resultant magnitude is 4 kg.wt. If we reverse the direction of one of them, the resultant magnitude is 3 kg.wt. Find the magnitude of each of the two forces.
- (9) Two forces of magnitude $\sqrt{3}$ F , 2F dyne act at a point, and their resultant is perpendicular to the first force. Find the angle between the two forces.
- (10) Find the magnitude of the resultant of two forces of magnitudes 4 Newton, 2 Newton both acting at a point, and the resultant is perpendicular to one of them.
- (11) Two forces of equal magnitude form an angle of measure 120° between them, and their resultant magnitude is 50 Newton. Find the magnitude of the two forces.
- (12) Two forces of magnitude 5, 3 Newton, both act at a point. If the resultant is perpendicular to the second force, find the magnitude of the resultant.
- (13) Two forces have magnitudes of 7, F dynes, and the resultant bisects the angle between the two forces. Find the value of F.
- (14) The measure of the angle between two forces 60°, and the magnitude of their resultant is 7 Newton. Find the magnitude of each of the two forces if the difference between them is 2 Newton.
- (15) Find the value of two forces of equal magnitude, and the magnitude of their resultant is 42 dynes, if the measure of the angle between them is 90° .

Homework (Week 1) - Math Applications

- (1) Two forces of magnitude 15, 8 kg.wt act on a point. If the magnitude of their resultant is 13 kg.wt, find the measure of the angle between these two forces.
- (2) Two forces meet at a point with a magnitude of 4F, 6F Newton, and the minimum value of their resultant is 24 Newton. Find the maximum value of their resultant.
- (3)Two forces of magnitude 8F, 3F kg.wt and the magnitude of their resultant is 5F Kg.wt. Find the measure of the angle between the two forces.
- (4) Two forces act on a point. If their minimum resultant is 14 kg. wt and their maximum resultant is 36 kg. wt, find the magnitude of each force.
- (5) Two forces of magnitude 24, 26 Newton act on a point, and their resultant is perpendicular to the first force. Find the magnitude of their resultant.
- (6) Two forces of equal magnitude form an angle of measure 60° between them, and their resultant magnitude is $30\sqrt{3}$ Newton. Find the magnitude of the two forces.
- (7) Two forces of equal magnitude meet at a point, and their resultant magnitude is 24 kg.wt. If we reverse the direction of one of them, the resultant magnitude is 7 kg.wt. Find the magnitude of each of the two forces.
- (8) Two forces of magnitude 7 Newton, 14 Newton act at a point, and their resultant is perpendicular to the first force. Find the measure of the angle between the two forces.

- (9) Find the value of two forces of equal magnitude, and the magnitude of their resultant is 6 dynes, if the measure of the angle between them is 90°.
- (10) Two forces of magnitude $F\,$, $\sqrt{2}$ Newton and the resultant bisect the angle between them , Find the value of F .
- (11) Two perpendicular forces 9 and 40 dynes, find the magnitude and direction of their resultant.
- (12) Two forces of magnitude F, 2F Newton act on a point and their resultant is perpendicular to the first force. Find the measure of the angle between them.
- (13) The measure of the angle between two forces 120°, and the magnitude of their resultant is 61 Newton. Find the magnitude of each of the two forces if the difference between them is 9 Newton.
- (14) Two perpendicular forces $\overline{F_1}$, $\overline{F_2}$ newtons act at a point. Their resultant magnitude is 84 newtons and makes an angle of 60° with $\overline{F_1}$. Find the magnitude of each of the two forces $\overline{F_1}$, $\overline{F_2}$.
- (15) Find the magnitude of the resultant of two forces of magnitude 4 Newton, 8 Newton both act at a point, and the resultant is perpendicular to one of them.

Weekly Assessment (Week Two) - Mathematics Applications Group One

- (1) Two forces of magnitude are 5 and 12 newtons. If the measure of the angle between the two forces is α where $\alpha \in [0, \frac{\pi}{2}]$, find the interval in which the magnitude of the resultant of the two forces belongs, measured in newtons.
- (2) Two forces of magnitude are F, 15 newtons acting at a point, and the measure of the angle between them is 120°, and the magnitude of their resultant are F newtons. Find the value of F in newtons.
- (3) Resolve a force of 60 newtons into two components inclined in the direction of the force at angles of measures 60°, 45° measuring in opposite directions. to the nearest tenth.
- (4) A force of magnitude 70 Newtons acts in a southeasterly direction. Find its components in the south and east directions.
- (5) Place a body weighing 200 Newtons on a plane inclined at an angle of 45° to the horizontal. Find the value of its weight component in the direction of the plane's greatest slope.

Group Two

- (1) Two forces of magnitude are $\overline{10}$ and $\overline{24}$ newtons. If the measure of the angle between the two forces is α where $\alpha \in [0, \frac{\pi}{2}]$, find the interval in which the magnitude of the resultant of the two forces belongs, measured in newtons.
- (2) Two forces of magnitude are F, 9 newtons acting at a point, and the measure of the angle between them is 120°, and the magnitude of their resultant are F newtons. Find the value of F in newtons.
- (3) Resolve a force of 150 newtons into two components inclined in the direction of the force at angles of measures 60°, 45° measuring in opposite directions. to the nearest tenth.
- (4) A force of magnitude 22 newtons acts in a northeasterly direction. Find its components in the north and easterly directions.
- (5) A body of weight 60 newtons is placed on a plane inclined at an angle of 60° to the horizontal. Find the value of its weight component in the direction of the plane's greatest slope.

Group Three

- (1) Two forces of magnitude are $\overline{9}$ and $\overline{12}$ newtons. If the measure of the angle between the two forces is α where $\alpha \in [0, \frac{\pi}{2}]$, find the interval in which the magnitude of the resultant of the two forces belongs, measured in newtons.
- (2) Two forces of magnitude are F, 11 newtons acting at a point, and the measure of the angle between them is 120°, and the magnitude of their resultant are F newtons. Find the value of F in newtons.
- (3) Resolve a force of 300 newtons into two components inclined in the direction of the force at angles of measures 60°, 45° measuring in opposite directions. to the nearest tenth.
- (4) A force of magnitude 7 Newtons acts in a northwesterly direction. Find its components in the north and west directions.
- (5) A body of weight 45 Newtons is placed on a plane inclined at an angle of 30° to the horizontal. Find the value of its weight component in the direction of the plane's greatest slope.