

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم العام السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجي

إشراف علمي مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج الرياضيات

للصف الأول الثانوي **لغات** الفصل الدراسى الأول للعام الدراسى ٢٠٢٦ / ٢٠٢٦

الأسبوع الثامن

لجنة الإعداد أ/ إيهاب فتحي

أ/ عصام الجزار

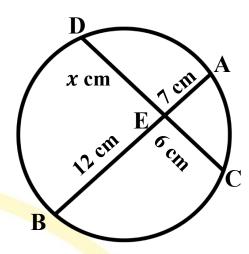
أ/ عفاف جاد

ترجمة أ/ محسب على

مراجعة أ/ شريف البرهامي

الرياضيات لغات للصف الأول الثانوي الأداء الصفى الأسبوع الثامن

- (1) If L, m are the two roots of the equation $x^2 5x + 6 = 0$, find the quadratic equation of roots L + 1, m + 1.
- (2) If $\frac{2}{L}$, $\frac{2}{m}$ are the two roots of the equation $4x^2 + 3x 2 = 0$, find the quadratic equation of roots L, m.
- (3) If L, m are the two roots of the equation $x^2 7x + 3 = 0$, find the quadratic equation of roots L + m, Lm.
- (4) If L, m are the two roots of the equation $x^2 + 7x 6 = 0$, find the quadratic equation of roots L 2, m 2.
- (5) Form the quadratic equation whose roots increase than the roots of the equation $x^2 6x 4 = 0$ by 2.
- (6) Find the general soluation of the equation: $sin6\theta = cos2\theta$.
- (7) Find the general solution of the equation: $cos3\theta = sin\theta$.
- (8) If $tan2\theta = cot3\theta$, find the values of θ wher $\theta \in]0, \frac{\pi}{2}[$
- (9) Find one of the values of θ wher $0^{\circ} < \theta < 90^{\circ}$ which satisfies the equation $sin(3\theta + 15^{\circ}) = cos(2\theta 5^{\circ})$
- (10) If $cos\theta = sin 2\theta$, where θ is an acute positive angle Find: $sin 3\theta$

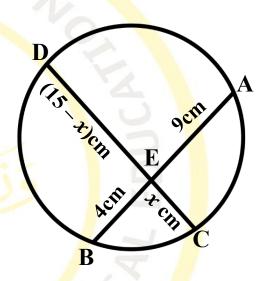

(11) In the opposite figure:

 \overline{AB} , \overline{CD} are two chords of a circle

$$\overline{AB} \cap \overline{CD} = \{E\}, EA = 7cm,$$

$$EB = 12cm, EC = 6cm,$$

ED = x cm, find the value of x

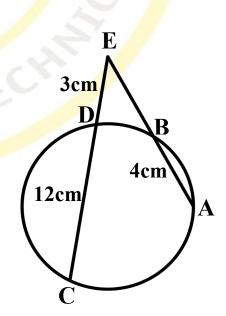

(12) In the opposite figure:

AB, CD are two chords of a circle

$$\overline{AB} \cap \overline{CD} = \{E\}, EA = 9cm,$$

$$EC = x \text{ cm}, ED = (15 - x) \text{ cm}.$$

 $EB = \frac{4}{cm}$, find the value of x.


(13) In the opposite figure:

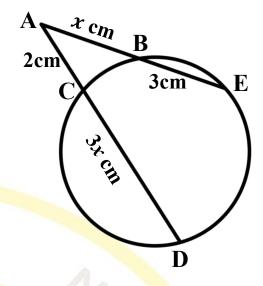
AB, CD are two chords of a circle

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, AB = 4cm$$

$$ED = 3cm, CD = 12cm$$

Find the length of \overline{EB} .

(14) In the opposite figure:

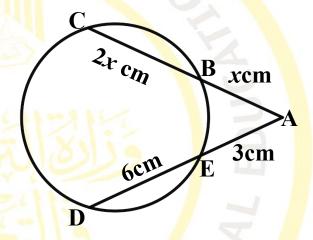

 \overline{EB} , \overline{CD} are two chords of a circle

$$\overrightarrow{EB} \cap \overrightarrow{DC} = \{A\}, EB = 3cm,$$

$$AB = x cm, AC = 2cm.$$

$$CD = (3x)cm$$

find the value of x


(15) In the opposite figure:

EB, CD are two chords

of a circle $\overrightarrow{EB} \cap \overrightarrow{DC} = \{A\},\$

AE = 3cm, AB = xcm

BC = 2xcm, DE = 6cm

الأسبوع الثامن 3 للصف الأول الثانوي الأداء المنزلي

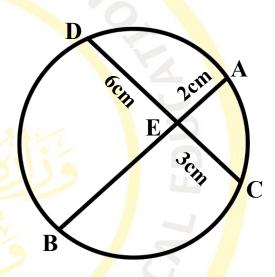
- If L, m are the two roots of the equation $x^2 7x + 3 = 0$ (1) find the value of:

- a) $L^2 + m^2$ b) $\frac{2}{L} + \frac{2}{m}$ c) $\frac{L}{m} + \frac{m}{L}$ d) $L^2m + Lm^2$
- If L, m are the two roots of the equation $x^2 + 3x 5 = 0$ **(2)** form the quadratic equation of roots L^2 , m^2
- Find the quadratic equation whose roots are duble the roots of the (3) equation: $2x^2 - 8x + 5 = 0$
- (4)Form the quadratic equation whose roots increase than the roots of the equation $x^2 - 7x - 9 = 0$ by 1.
- If L, m are the two roots of the equation $x^2 7x + 3 = 0$, **(5)** find the quadratic equation of roots 3L, 3m.
- If L, m are the two roots of the equation $x^2 7x + 3 = 0$, (6)find the quadratic equation of roots L + 2, m + 2.
- If L, m are the two roots of the equation $x^2 7x + 3 = 0$, **(7)** find the quadratic equation of roots $\frac{2}{L}$, $\frac{2}{m}$.
- Find the general solution of the equation: $\sin 4\theta = \cos 2\theta$. (8)
- (9) Find the general solution of the equation: $cos5\theta = sin\theta$.

(10) Find all the values of θ wher $\theta \in]0, \frac{\pi}{2}[$ which satisfies the following equations: a) $sin\theta - cos\theta = 0$

b)
$$2\cos\left(\frac{\pi}{2}-\theta\right)=1$$
.

c)
$$csc\left(\theta-\frac{\pi}{6}\right)=sec\theta$$
.

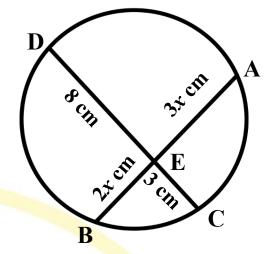

- (11) Find one of the values of θ wher $0^{\circ} < \theta < 90^{\circ}$ which satisfies the equation: $tan(\theta + 20^{\circ}) = cot(3\theta + 30^{\circ})$.
- (12) In the opposite figure:

AB, CD are two chords of a circle

$$\overline{AB} \cap \overline{CD} = \{E\}, EA = 2cm,$$

$$EC = 3cm, ED = 6cm.$$

find the length of EB.

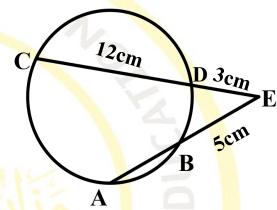

(13) In the opposite figure:

AB, CD are two chords of a circle

$$\overline{AB} \cap \overline{CD} = \{E\}, EA = (3x)cm,$$

$$EB = (2x)cm$$
, $EC = 3cm$,

ED = 8cm. Find x

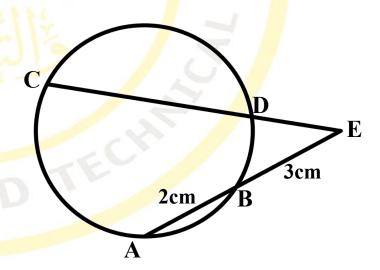

(14) In the opposite figure:

AB, CD are two chords of a circle

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, EB = 5cm,$$

DC = 12cm, ED = 3cm.

find the length of AB.


(15) In the opposite figure:

A circle in which

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, EB = 3cm,$$

EC = 7.5 cm, AB = 2 cm.

find the length of CD.

الأسبوع الثامن 8

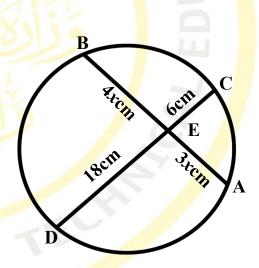
التقييمات الأسبوعية

للصف الأول الثانوي

الرياضيات لغات

First group

- (1) If L, m are the two roots of the equation $2x^2 4x + 5 = 0$ form the quadratic equation of roots $5L^2$, $5m^2$
- (2) If L, m are the two roots of the equation $x^2 5x + 3 = 0$ find the value of: $(L m)^2$
- (3) Find the general soluation of the equation: $sin 5\theta = cos\theta$.
- (4) If $tan3\theta = cot2\theta$, where θ is the measure of an acute positive angle. Find θ .
- (5) In the opposite figure:


AB, CD are two chords of a circle

$$\overline{\mathbf{AB}} \cap \overline{\mathbf{CD}} = \{\mathbf{E}\},\$$

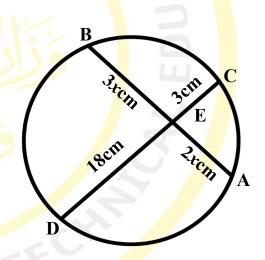
$$EA = (3x)cm$$

$$EC = 6$$
cm, $ED = 18$ cm

$$EB = (4x)cm$$

Second group

- (1) If L, m are the two roots of the equation $2x^2 6x + 3 = 0$ form the quadratic equation of roots $4L^2$, $4m^2$
- (2) If L, m are the two roots of the equation $x^2 6x + 5 = 0$ find the value of: $(L m)^2$
- (3) Find the general soluation of the equation: $sin7\theta = cos2\theta$.
- (4) If $tan5\theta = cot\theta$, where θ is the measure of an acute positive angle. Find θ .
- (5) In the opposite figure:


AB, CD are two chords of a circle

$$\overline{\mathbf{AB}} \cap \overline{\mathbf{CD}} = \{ \mathbf{E} \},$$

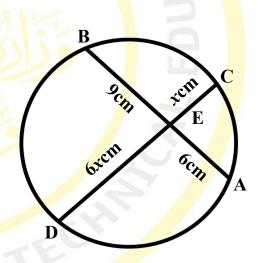
$$EA = (2x)cm$$

$$EC = 3cm, ED = 18cm$$

$$EB = (3x)cm$$

Third group

- (1) If L, m are the two roots of the equation $2x^2 8x + 3 = 0$ form the quadratic equation of roots $2L^2$, $2m^2$
- (2) If L, m are the two roots of the equation $x^2 8x + 3 = 0$ find the value of: $(L m)^2$
- (3) Find the general soluation of the equation: $sin 6\theta = cos 3\theta$.
- (4) If $tan3\theta = cot\theta$, where θ is the measure of an acute positive angle. Find θ .
- (5) In the opposite figure:


AB, CD are two chords of a circle

$$\overline{AB} \cap \overline{CD} = \{E\},\$$

$$EA = 6cm$$

$$EC = x \text{ cm}, ED = (6x) \text{cm}$$

$$EB = 9 cm$$

