

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجى إشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج الرياضيات للصف الأول الثانوي الفصل الفصل الدراسى الأول للعام الدراسى ٢٠٢٦ / ٢٠٢٦

الأسبوع التاسع

لجنة الإعداد أ/ إيهاب فتحى

أ/ عصام الجزار

أ/ عفاف جاد

مراجعة أ/ شريف البرهامي

🔇 الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع التاسع 🥎

$$\frac{7+7}{1}$$
 ، $\frac{7}{7}$ ، $\frac{7}{7}$ ، $\frac{7}{7}$ ، $\frac{7}{7}$

و
$$(\ Y \)$$
 إذا كان أحد جذري المعادلة : $(\ Y \)$ $(\ Y \)$ $(\ Y \)$ $(\ Y \)$ و معكوس جمعى للجذر الأخر فأوجد قيمة : ك

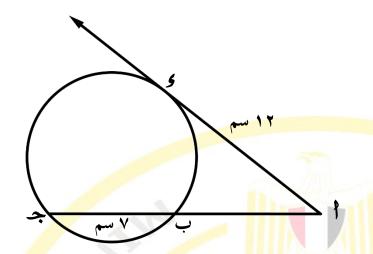
(
$$^{\prime\prime}$$
) إذا كان : $^{\prime\prime}$ ، م جذري المعادلة : $^{\prime\prime}$ – $^{\prime\prime}$ – $^{\prime\prime}$ = $^{\prime\prime}$ = $^{\prime\prime}$ المعادلة التربيعية التي جذراها : $^{\prime\prime}$) $^{\prime\prime}$ ، $^{\prime\prime}$ م + $^{\prime\prime}$ ، $^{\prime\prime}$ م + $^{\prime\prime}$

$$[\pi Y : \bullet] \ni m$$
 حيث $m \in [\pi Y : \bullet]$

(٦) أكمل العبارات التالية لتصبح صحيحة :

مدي الدالة د : د (
$$oldsymbol{ heta}$$
) = جتا $oldsymbol{ heta}$ هو

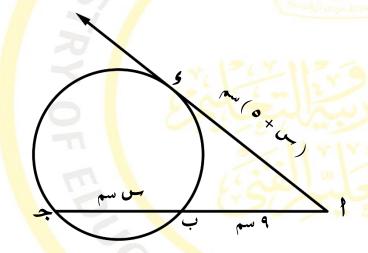
$$()$$
 مدي الدالة د : د $(\boldsymbol{\theta}) = \boldsymbol{\xi} = \boldsymbol{\theta}$ هو

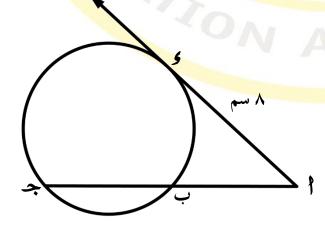

القيمة العظمي للدالة د : د (
$$\boldsymbol{\theta}$$
) = ٣ جتا $\boldsymbol{\theta}$ هي

$$oldsymbol{\theta}$$
 د) القيمة العظمي للدالة د : د ($oldsymbol{ heta}$ القيمة العظمي للدالة د : د (

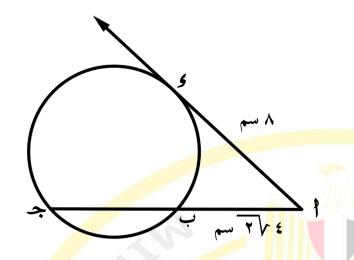
(٧) أوجد القيمة العظمى و القيمة الصغري ، ثم عين المدي لكل دالة من الدوال الأتية :

$$oldsymbol{ heta}$$
 د $(oldsymbol{ heta}) = oldsymbol{ heta}$ د $(oldsymbol{ heta}) = oldsymbol{ heta}$ د $(oldsymbol{ heta})$

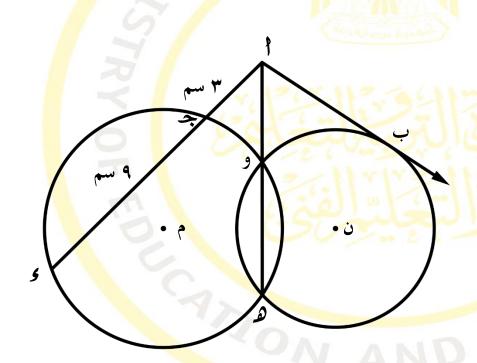


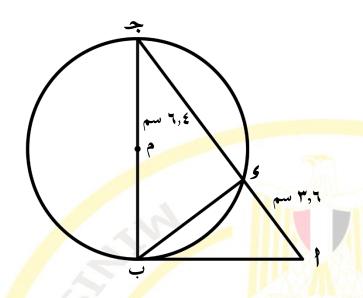

(٨) في الشكل المقابل:

ا نقطة خارج دائرة ، الح مماس للدائرة الحج تقطع الدائرة عند ب ، ج ، 12 المائرة عند ب ، ج ، 12 المائرة ب ، 12 المائرة ب ب ج = 12 سم المائرة طول المائرة المائر


(٩) في الشكل المقابل:

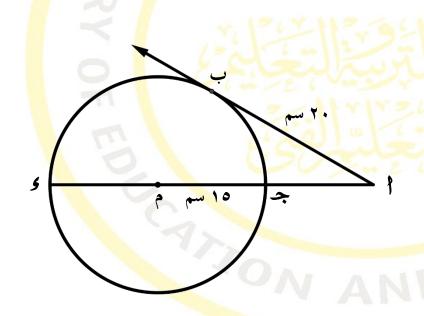
(١٠) في الشكل المقابل:





الم المائرة ، جب وترا فيها المحائرة ، جب وترا فيها المحب = $\{ \} \}$ ، $\{ \} = \Lambda$ سم $\{ \} = 2 \}$ سم $\{ \} = 2 \}$ سم اثبت أن : $\{ \} = 2 \}$

(١٢) في الشكل المقابل:


(١٤) في الشكل المقابل :

جب قطر في الدائرة م

النقطة خارج الدائرة ، رسم البح فقطع
الدائرة في ك ، كج = ٢,٢ سم ،

الدائرة في ك ، كج = ٣,٦ سم ،

الح = ٣,٦ سم ، با مماسة للدائرة م
أوجد طول قطر الدائرة

(10) في الشكل المقابل:

و الشكل المقابل:

و الشكل المقابل:

و الشكل المقابل:

المبير الدائرة م المبير الدائرة م المبير المبير

الأسبوع التاسع الأداء المنزلي

(
$$^{\prime\prime}$$
) إذا كان : $^{\prime}$ ، م جذري المعادلة : $^{\prime\prime}$ – $^{\prime\prime}$ – $^{\prime\prime}$ = $^{\prime\prime}$ = صفر فأوجد المعادلة التربيعية التي جذراها : $^{\prime\prime}$) $^{\prime\prime}$ ، م + $^{\prime\prime}$ ، م + $^{\prime\prime}$

$$[\pi Y, \bullet] \ni صحین سے الدالہ: $m = Y = m$$$

$$[\pi Y, \bullet] \in [\pi Y, \bullet]$$
 حيث س $\equiv [\pi Y, \bullet]$

(٦) أكمل العبارات التالي<mark>ة ل</mark>تصبح صحيحة :

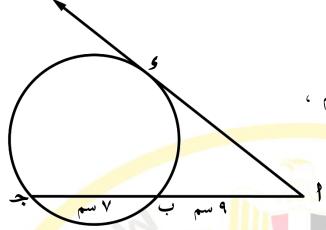
مدي الدالة د : د
$$(\theta)$$
 = جا θ هو $($

$$oldsymbol{ heta}$$
 (ب) مدي الدالة د : د ($oldsymbol{ heta}$ = ۲جتا $oldsymbol{ heta}$ هو

$$oldsymbol{ heta}$$
 ($oldsymbol{ heta}$) = $oldsymbol{ heta}$ هي ($oldsymbol{ heta}$

(٧) أوجد القيمة العظمى و القيمة الصغري ، ثم عين المدي لكل دالة من الدوال الأتية :

$$\boldsymbol{\theta} = \boldsymbol{\varphi} = (\boldsymbol{\theta}) = \boldsymbol{\varphi} = (\boldsymbol{\theta}) + \boldsymbol{\varphi}$$

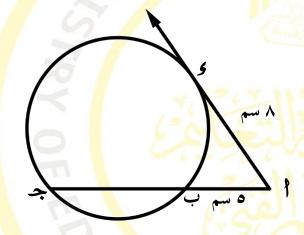


(٨) في الشكل المقابل:

﴿ نقطة خارج دائرة ، ﴿ كُمُّ مُمَاسُ لَلْدَائِرَةُ

ب ج = ٧ سم

أوجد: طول أك


(٩) في الشكل المقابل:

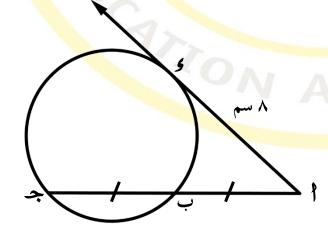
ا نقط<mark>ة خارج دائرة ، أكر مم</mark>اس للدائرة ا

مج تقطع الدائرة عند ب ، ج ، ، او $\Lambda = \Lambda$ سم ،

<mark>∤ب</mark> = ٥ سم

أ<mark>وجد : طول جب</mark>

(**١٠**) في الشك<mark>ل ا</mark>لمقابل :

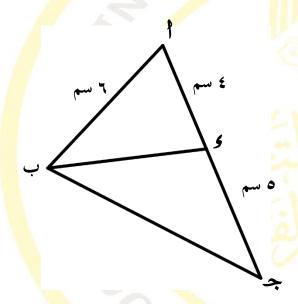

ا نقطة خارج <mark>دائرة ، الح</mark>ماس للدائرة

آج تقطع الدائرة عند ب، ج،

ا او = ۸ سم ،

اب = ب ج

أوجد: طول أب



A TVE

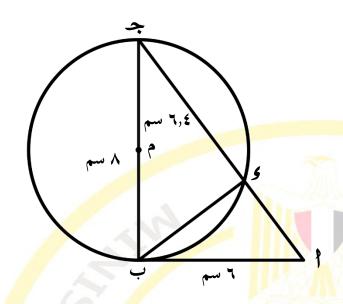
(١١) في الشكل المقابل:

ا نقطة خارج دائرة ، الح مماس للدائرة الحج تقطع الدائرة عند ب ، ج ، المباه عند ب ، ج ، المباه المباه الدائرة عند ب ، ج ، المباه المباه

(۱۲) في الشكل المقابل:

ابج مثلث ، فیه اب = ۲سم ، کو ∈ اج بحیث : اکو = کا سم ،

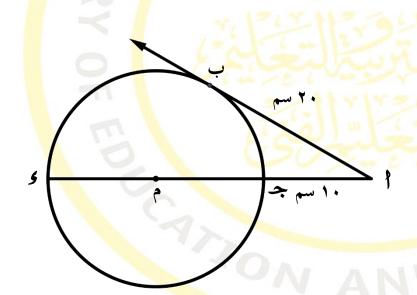
و ∈ اجه بحيث : او = ٤ س


وج = 0 سم

أ<mark>ثبت</mark> أن :

أب مماسة للدائرة المارة بالنقط ب، ج، ي

سم، وج =
$$3$$
 سم، إذا كان $1 = 5$ سم، وج = 3 سم، إذا كان $1 = 7$ سم مثلث، و $1 = 7$ حيث وب = 3 سم، وج = 3 سم مثلث أثبت أن $1 = 7$ مماسة للدائرة التي تمر بالنقط $1 = 7$ ، ب و



(١٤) في الشكل المقابل:

(**٥) في** الشكل المقابل:

جو قطر في الدائرة م ،

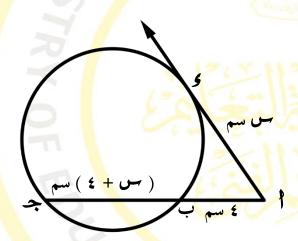
أب مماس للدائرة ، أب = ٢٠ سم
، أج = ١٠ سم
أوجد طول نصف قطر الدائرة م

الرياضيات للصف الأول الثانوى التقييمات الأسبوعية الأسبوع التاسع

المجموعة الأولى

- (۱) إذا كان : ل ، م جذري المعادلة : $m^7 \Lambda$ m + 7 = 0 صفر فأوجد المعادلة التربيعية التي جذراها : $m^7 + 1$
 - أوجد القيمة العظمى و القيمة الصغري للدالة : θ جا θ ثم عين مداها (τ
 - وجد القيمة العظمي و القيمة الصغري للدالة : ص $\mathbf{r}=\mathbf{r}$ جتا $oldsymbol{ heta}$ ثم عين مداها (\mathbf{r}

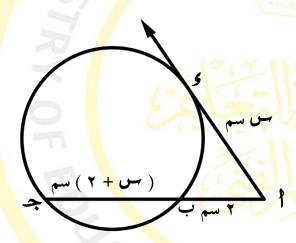
(٤) في الشكل المقابل: المقطة خارج دائرة ، الوكم المدائرة المقابل: المج تقطع الدائرة عند ب ، ج ، الو = س سم ، الب = ٩ سم ب ج = (س - ٥) سم العددية الوجد: قيمة س العددية


سم، إذا كان أب = $\Lambda = \frac{1}{\sqrt{2}}$ حيث أج = Λ سم، وج = Λ سم، إذا كان أب = Λ سم أثبت أن $\frac{1}{\sqrt{2}}$ ماسة للدائرة التي تمر بالنقط ج ، ب ، ك

المجموعة الثانية

و $oldsymbol{ au}$ أوجد القيمة العظمي و القيمة الصغري للدالة : ص $oldsymbol{ au}$ جا $oldsymbol{ heta}$ ثم عين مداها $oldsymbol{ au}$

($\boldsymbol{\pi}$) أوجد القيمة العظمي و القيمة الصغري للدالة : ص = $\boldsymbol{\pi}$ جتا $\boldsymbol{\theta}$ ثم عين مداها



المجموعة الثالثة

(۱) إذا كان : ل ، م جذري المعادلة : س '' — 3 س + 7 = صفر فأوجد المعادلة التربيعية التي جذراها : b^{7} + b^{7} ، b^{7} ، b^{7} ، b^{7} ، b^{7} ، b^{7}

- و $oldsymbol{ au}$ أوجد القيمة العظمي و القيمة الصغري للدالة : ص $oldsymbol{ au}=oldsymbol{ au}$ جا $oldsymbol{ heta}$ ثم عين مداها
- (\mathbf{r}) أوجد القيمة العظمي و القيمة الصغري للدالة : ص = \mathbf{t} جتا $\boldsymbol{\theta}$ ثم عين مداها

سم ، ب کو = ب ہم ہ ، ب کو = ب کہ = کیث کوجہ = ۷ سم ، ب کو = ۹ سم ، إذا کان = ۱ ۲ سم اثبت أن = اللہ المرائرة التي تمر بالنقط جہ ، = ، کو بالنقط جہ ، کا ہ کو بالنقط جہ ، کا ہو اللہ المرائرة التي تمر بالنقط جہ ، کا ہ کو بالنقط جہ ، کا ہ کو بالد کا بالد کی بالد کا بالد کی بالد کی