

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجى إشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج الرياضيات للصف الأول الثانوي الفصل الفصل الدراسى الأول للعام الدراسى ٢٠٢٦ / ٢٠٢٦

الأسبوع الثامن

لجنة الإعداد أ/ إيهاب فتحى

أ/ عصام الجزار

أ/ عفاف جاد

مراجعة أ/ شريف البرهامي

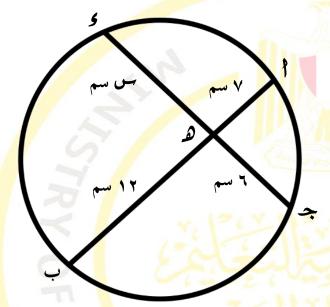
$oldsymbol{\Lambda}$ الرياضيات للصف الأول الثانوى الأداء الصفى الأسبوع الثامن $oldsymbol{\Lambda}$

- و (۱) إذا كان : ل ، م هما جذرا المعادلة : $m^7 6m + 7 = 0$ فأوجد المعادلة التربيعية التي جذراها : m + 1 + 1 ، m + 1 + 1 + 1
- (Υ) إذا كان $\frac{\Upsilon}{U}$ ، $\frac{\Upsilon}{A}$ هما جذرا المعادلة : Υ Ψ Ψ Ψ Ψ Ψ فأوجد المعادلة التربيعية التي جذراها : Ψ ، م

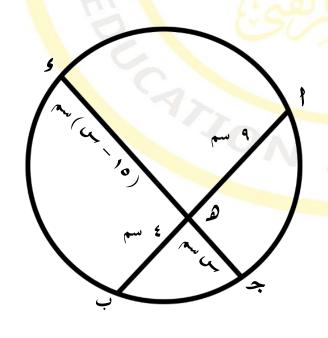
 - (٤) إ<mark>ذا</mark>كان : ل ، م <mark>ج</mark>ذري المعادلة : س ۖ + ٧س ٦ = صفر فأوجد المعادلة التربيعية التي جذراها : ل – ٢ ، م – ٢
- - $\boldsymbol{\theta}$ ۲) أوجد الحل العام للمعادلة : جا ۲ $\boldsymbol{\theta}$ = جتا ۲
 - $\boldsymbol{\theta}$ جا $\boldsymbol{\theta}$ = جا $\boldsymbol{\theta}$ اوجد الحل العام للمعادلة : جتا $\boldsymbol{\theta}$

: التي تحقق المعادلة :
$$heta > heta > \hat{ heta} > \hat{ heta} = \hat{ heta}$$
 التي تحقق المعادلة : جا $(heta - heta + heta) = +$ جتا $(heta - heta + heta) = +$ التي تحقق المعادلة :

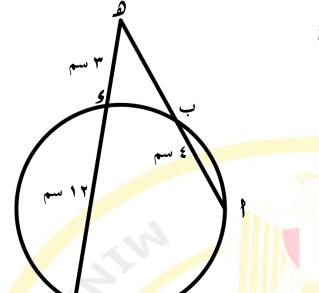
 $oldsymbol{ heta}$ جا $oldsymbol{ heta}$ خیث $oldsymbol{ heta}$ زاویة حادة موجبة فأوجد : جا $oldsymbol{ heta}$ زاویة حادة موجبة فأوجد : جا $oldsymbol{ heta}$

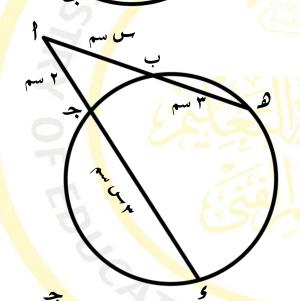


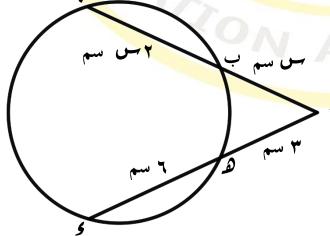
(۱۱) في الشكل المقابل: أب، جو وتران في دائرة أب ← جو = { ه } ، ه أ = ٧ سم ، هج = ٦ سم ، هو = س سم هب = ١٢ سم أوجد: قيمة س











$oldsymbol{\Lambda}$ الرياضيات للصف الأول الثانوي الأداء المنزلى الأسبوع الثامن $oldsymbol{\Lambda}$

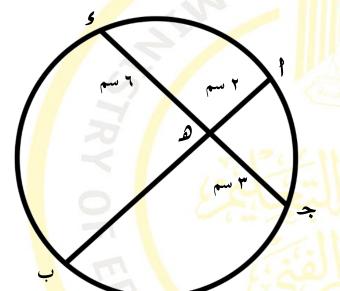
(۱) إذا كان : ل ، م جذري المعادلة :
$$m^7 - Vm + m = صفر فأوجد القيمة العددية لكل من المقادير الأتية : $\frac{1}{4}$ ($\frac{1}{4}$) $\frac{1}{4}$ ($\frac{1}{4}$$$

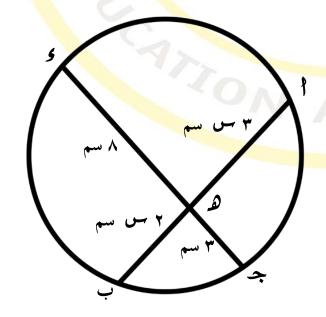
- (Υ) إذا كان : ل ، م هما جذرا المعادلة : m^{Υ} + Υ m m = صفر فكون المعادلة التربيعية التي جذراها : m ، m
 - ($^{\mathbf{r}}$) أوجد المعادلة التربيعية التي كل جذر من جذريها يساوي ضعف نظيره من جذري المعادلة : $^{\mathbf{r}}$ $^{\mathbf{r}}$
- (٤)كو<mark>ن</mark> المعادلة التربيعي<mark>ة ا</mark>لتي كل من جذريها يزيد بمقدار ١ عن نظيره من جذري المعادلة : س٢ ٧س ٩ = صفر
 - (\circ) إذا كان : ل ، م جذري المعادلة : س \sim \sim \sim \sim \sim \sim فأوجد المعادلة التربيعية التي جذراها \sim ل ، \sim م
 - (٦) إذا كان : ل ، م جذري المعادلة : $m^7 \sqrt{m} + m = صفر فأوجد المعادلة التربيعية التي جذراها : <math>t + r$ ، r + r ، r + r
- $\frac{7}{0}$ ، $\frac{7$
 - $oldsymbol{ heta}$ ۲ العام للمعادلة : جا کا العام للمعادلة : جا کا
 - $oldsymbol{ heta}$ جا $oldsymbol{ heta}$ جا العام للمعادلة : جتا $oldsymbol{ heta}$

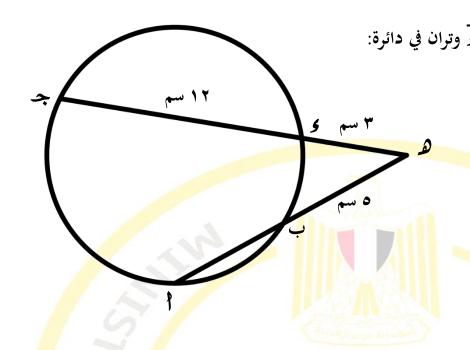
: و التي تحقق كلا من المعادلات الأتية :
$$\frac{\pi}{7}$$
 ، • [$\ni \theta$ حيث θ حيث عنم عنه المعادلات الأتية :

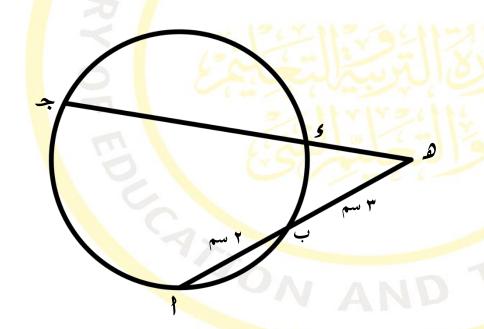
عنا
$$oldsymbol{ heta} = oldsymbol{ heta}$$
 جنا $oldsymbol{ heta} = oldsymbol{ heta}$ جنا $oldsymbol{ heta} = oldsymbol{ heta} - oldsymbol{ heta}$ عنا $oldsymbol{ heta} = oldsymbol{ heta} = oldsymbol{ heta} = oldsymbol{ heta}$

: التي تحقق المعادلة:
$$oldsymbol{ heta} = oldsymbol{ heta} > oldsymbol{ heta} >$$









للصف الأول الثانوى التقييمات الأسبوعية الأسبوع الثامن 🔥

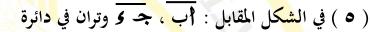
الرياضيات للصف الأول الثان

المجموعة الأولى

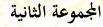
فأوجد المعادلة التربيعية التي جذراها: ٥٠٪ ، ٥ م٠

$$(\Upsilon)$$
 إذا كان : ل ، م هما جذرا المعادلة : س $(\Upsilon - \Theta - \Psi + \Psi = \Theta + \Phi)$ فأوجد قيمة المقدار : (ل $(\Upsilon - \Phi)$

 $oldsymbol{ heta}$ وجد الحل العام للمعادلة : جا $oldsymbol{ heta}$ = جتا



آب \bigcap جو $\{ a \}$ ، $\{ a \} = \{ a \}$ ، $\{ a \} = \{ a \} \}$ سم ، $\{ a \} = \{ a \} \}$



ف<mark>أو</mark>جد المعادلة التربيعية التي جذراها : كال^٢ ، ٤ م٢

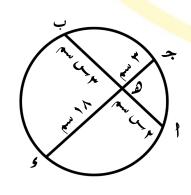
$$^{\prime}$$
 ($^{\prime}$) إذا كان $^{\cdot}$ ل ، م هما جذرا المعادلة $^{\cdot}$ س $^{\prime}$ $^{\prime}$ س $^{\prime}$ $^{\prime}$ صفر فأوجد قيمة المقدار $^{\cdot}$ (ل $^{\prime}$ م $^{\prime}$

 θ ۲ اوجد الحل العام للمعادلة : جا ۲ θ = جتا

$$oldsymbol{ heta}$$
 وذا كانت : ظا $oldsymbol{ heta} = oldsymbol{ heta}$ حيث $oldsymbol{ heta}$ قياس زاوية حادة موجبة فأوجد $oldsymbol{ heta}$

(٥) في الشكل المقابل: أب ، جد كو وتران في دائرة

اب ر جو = { ه } ، ه ا = (۲س) سم ، هج = ۳ سم ،

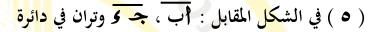


المجموعة الثالثة

فأوجد المعادلة التربيعية التي جذراها: ٢ ل٢ ، ٢ م٢

 $oldsymbol{ heta}$ ۳ اجا $oldsymbol{ heta}$ جتا $oldsymbol{ heta}$ العام للمعادلة : جا $oldsymbol{ heta}$

 $oldsymbol{ heta}$ وذا كانت : $\dfrac{d}{d}$ $\dfrac{d}{d}$ خيث $\dfrac{d}{d}$ قياس زاوية حادة موجبة فأوجد $\dfrac{d}{d}$



اب آ جو = { ه } ، ه ا = ٦ سم ، هج = س سم ،

 $\mathbf{a}_{2} = (7 - \mathbf{u}_{2})$ سم ، هب = ۹ سم أوجد قيمة : س

