

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجى إشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج الرياضيات للصف الأول الثانوي الفصل الفصل الدراسى الأول للعام الدراسى ٢٠٢٦ / ٢٠٢٦

الأسبوع السابع

لجنة الإعداد أ/ إيهاب فتحى أ/ عصام الجزار أ/ عبير نجاح أا

> مراجعة أ/ شريف البرهامي

أ/ عفاف جاد

♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات للصف الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات الأسبوع الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات الأسبوع الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات الأسبوع الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات الأسبوع الأول الثانوي الأداء الصفى الأسبوع السابع ♦ ♦ الرياضيات الأسبوع الأول الثانوي الأداء الصفى الأسبوع الأسب

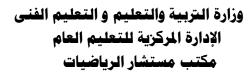
- (١) كون المعادلة التربيعية التي جذراها: -٤، ١
 - (٢) كون المعادلة التربيعية التي جذراها : ٣ ، ٥
- (٣) كون المعادلة التربيعية التي جذراها: ٦ ، ٦ ، ٦ ت
- (٤) كون المعا<mark>دلة</mark> التربيعية التي جذراها : 😙 ، 😙
- (o) كون المعادلة التربيعية التي جذراها : ٢ +٧ ٣ ت ، ٢ -٧ ٣ ت
- $\frac{-7 7 3 \text{ }}{-7 + 7}$ ، $\frac{-7 3 \text{ }}{-7 + 7}$ ، $\frac{-7 3 \text{ }}{-7 + 7}$ ، $\frac{-7 3 \text{ }}{-7 + 7}$.
- (۷) أوجد قيمة كل ممايأتي : ظا ۴۰۰ ، جا ۱۵۰ ، جتا ۱۵۰ ، جا ۱۳۵ ، قتا ۴۰۰ ، ظا ۲۰۰
- (Λ) أوجد قيمة كل ثما يأتي : ظا $(-\cdot \circ \circ)$ ، جتا $(-\cdot \circ)$ ، ختا (Λ)
 - $(\ ^{\circ})$ إذا كان : ظا $oldsymbol{ heta}=$ جا $(\ ^{\circ})$ جتا $(\ ^{\circ})$ جتا $(\ ^{\circ})$ اوجد قيم $oldsymbol{ heta}$ حيث $oldsymbol{ heta}$ جتا $(\ ^{\circ})$

 $(\begin{array}{c} \hline {\bf v} \\ {\bf v} \end{array})$ إذا كانت الزاوية الموجهة التي قياسها ${m heta}$ في الوضع القياسي ويمر ضلعها النهائي بالنقطة $(\begin{array}{c} {\bf v} \\ {\bf v} \end{array})$ فأوجد الدوال المثلثية الاتية :

$$(oldsymbol{ heta}+\ ^{\circ}oldsymbol{ heta}+\ ^{\circ}o$$

ن افا کان : جتا
$$\theta = -\frac{6}{17}$$
 حیث $0 < \theta > 0$ فاوجد قیمة کل نما یأتی : $(\theta + 0)$ جتا $(\theta + 0)$ خال $(\theta + 0)$ خ

إذا كان الضلع النهائي لزاوية قياسها θ في وضعها القياسي و ضلعلها النهائي يقطع دائرة الوحدة في النقطة $\left(-\frac{2}{0}\right)$. $\left(-\frac{\pi}{0}\right)$ فأوجد :


$$(\theta + \frac{\pi}{7})$$
 اجا $(\theta + \frac{\pi}{7})$ اجا $(\theta + \frac{\pi}{7})$ اجا $(\theta + \frac{\pi}{7})$ اجا $(\theta + \frac{\pi}{7})$ الحج $(\theta + \frac{\pi}{$

- ۹ : المضلعان : أب جى ، س ص ع ل متشابحان ، و النسبة بين مساحة سطحيهما + : ۹ ، س ص + + 1 سم فإذا كان : أب + (+ 1) سم فأوجد : قيمة ك
 - (١٤) مضلعان متشابحان ، ٩ مساحة سطح المضلع الأول = ١٦ مساحة سطح المضلع الثاني فإذا كان محيط المضلع الأول ٥٥ سم أوجد محيط المضلع الثاني.
- (10) مضلعان متشابحان النسبة بين محيطيهما ٣: ٥ فإذا كانت مساحة سطح احداهما تقل عن مساحة سطح الأخر بمقدار ٢٤ سم فأوجد مساحة سطح كل من المضلعين.

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام مكتب مستشار الرياضيات

♦ الرياضيات للصف الأول الثانوي الأداء المنزلي الأسبوع السابع ♦ الرياضيات للصف الأول الثانوي الأداء المنزلي الأسبوع السابع ♦ الرياضيات للصف الأول الثانوي الأداء المنزلي المنابع ♦ الرياضيات للصف الأول الثانوي الأداء المنزلي الأسبوع السابع ♦ الرياضيات للصف الأول الثانوي الأداء المنزلي المنابع ♦ الرياضيات للصف الأول الثانوي الأداء المنزلي المنابع ♦ الرياضيات المنابع المنابع ♦ الرياضيات المنابع المنابع المنابع ♦ الرياضيات المنابع المنابع المنابع ♦ الرياضيات المنابع المنابع المنابع المنابع ♦ الرياضيات المنابع المنا

- (١) كون المعادلة التربيعية التي جذراها: ٣، ٢
- (٢) كون المعادلة التربيعية التي جذراها: -٣، ٧
- (٣) كون المعادلة التربيعية التي جذراها : ٥ ت ، ٥ ت
- (٤) كون المعادلة التربيعية التي جذراها : ٣ ، ٣ ،
- (\circ) كون المعادلة التربيعية التي جذراها : \checkmark + \checkmark \checkmark \checkmark \checkmark \checkmark
- $\frac{7}{2}$ کون المعادلة التربیعیة التی جذراها : $\frac{7}{2}$ ، $\frac{7}{2}$ ، $\frac{7}{2}$
- (۷) أوجد قيمة كل ثما يأتي : ظا ١٣٥ ، جا ١٢٠ ، جتا (٢٤٠)، ظا ٣٣٠ ، ظا ٣٣٠
- (Λ) أوجد قيمة كل مما يأتي : جا ٢٢٥ ، جتا $(-\frac{\pi^{\vee}}{2})$ ، ظتا ١٣٥ (Λ)

 $(\begin{array}{c} \frac{2}{6} & \frac{7}{6} \end{array})$ إذا كانت الزاوية الموجهة التي قياسها θ في الوضع القياسي ويمر ضلعها النهائي بالنقطة $(\begin{array}{c} \frac{2}{6} & \frac{7}{6} \end{array})$ فأوجد الدوال المثلثية الاتية :

$$(oldsymbol{ heta}+\mathring{ exttt{q}}oldsymbol{ heta}+\mathring{ exttt{q}}+\mathring{ exttt{q}}+$$

ن ا کان : جا
$$\theta = -\frac{\xi}{6}$$
 حیث ۱۸۰ $^{\circ}$ $^{\circ}$ فاوجد قیمه کل مما یاتی : $(\theta + ^{\circ} \pi 7.)$ فاوجد قیمه کل مما یاتی : $(\theta - ^{\circ})$ جا $(\theta - ^{\circ})$ جا $(\theta - ^{\circ})$ جا $(\theta + ^{\circ})$ فا $(\theta - ^{\circ})$ جا $(\theta + ^{\circ})$ فا $(\theta - ^{\circ})$ جا $(\theta + ^{\circ})$ فا $(\theta + ^{\circ})$ فا $(\theta + ^{\circ})$

(۱۲) إذا كان الضلع النهائي لزاوية قياسها θ في وضعها القياسي و ضلعلها النهائي يقطع دائرة الوحدة في النقطة ($\frac{1}{7}$ ، $\frac{1}{7}$)

فأوجد :

$$(oldsymbol{ heta} + rac{\pi}{\gamma})$$
 ا جا $(oldsymbol{ heta} + \mathring{\gamma})$ ا جا $(oldsymbol{ heta} + \mathring{\gamma})$

- - (١٤) مضلعان متشابحان ، ٤ مساحة سطح المضلع الأول = ٩ مساحة سطح المضلع الثاني فإذا كان محيط المضلع الأول ٥٤ سم أوجد محيط المضلع الثاني
- (١٥) مضلعان متشابهان النسبة بين محيطيهما ٤ : ٧ فإذا كانت مساحة سطح احداهما يزيد عن مساحة سطح الاخر بمقدار ٩٩ سم فأوجد مساحة سطح كل من المضلعين

Ⅴ الرياضيات للصف الأول الثانوى التقييمات الأسبوعية الأسبوع السابح Ⅴ

المجموعة الأولى

- (١) كون المعادلة التربيعية التي جذراها: ٥ ، -٥
- (۲) كون المعادلة التربيعية التي جذراها : $\mathbf{Y} \mathbf{3}$ \mathbf{v} ، $\mathbf{W} \mathbf{3}$ \mathbf{v}^{T}

 $oldsymbol{ heta}$ وجد : قيم $oldsymbol{ heta}$ حيث ، $oldsymbol{ heta} > oldsymbol{ heta} > oldsymbol{ heta}$

 \mathring{r} و ناکان : جتا $\mathbf{\theta} = \frac{\mathbf{t}}{\mathbf{o}} = \mathbf{\theta}$ حیث \mathring{r} د کان : جتا $\mathbf{\theta} = \mathbf{t}$ د کان : جتا $\mathbf{\theta} = \mathbf{t}$ د کان : جتا \mathbf{t} د کان : حتا \mathbf{t} د کان : حتا

(٥) م<mark>ض</mark>لعان متشابحان النسبة بين محيطيها ٢ : ٣ فإذا كانت مساحة المضلع الأكبر تزيد عن ضعف مساحة المضلع الاصغر بمقدار ٢٠ سم٢ . فأوجد مساحة سطح كل منهما.

المجموعة الثانية

- (۱) ك<mark>ون</mark> المعادلة التربيعي<mark>ة ا</mark>لتي جذراها : <mark>صفو ، ٤</mark>
- (٢) كون <mark>المعا</mark>دلة التربيعية التي جذراها : ١ + ت ، ١ +ت٣
- ($^{\circ}$ $^{$

أوجد : : قيم $oldsymbol{ heta}$ حيث ، $^{\circ} < oldsymbol{ heta} > ^{\circ}$ ۳٦،

 \mathring{r} و ناکان : جتا $oldsymbol{ heta}=rac{oldsymbol{\delta}}{oldsymbol{\gamma}}=oldsymbol{ heta}$ حیث \mathring{r} د کان : جتا $oldsymbol{ heta}=oldsymbol{ heta}$ د کان : جتا $oldsymbol{ heta}=oldsymbol{ heta}$

(o) مضلعان متشابحان النسبة بين محيطيها o : ٣ فإذا كانت مساحة المضلع الأكبر تزيد عن مساحة المضلع الأصغر بمقدار ٨٠ سم . فأوجد مساحة سطح كل منهما.

المجموعة الثالثة

- (١) كون المعادلة التربيعية التي جذراها: ١ ، ٥
- $\frac{2+\overline{c}}{\overline{c}}$ ، $\frac{2+\overline{c}}{\overline{c}}$ ، $\frac{2+\overline{c}}{\overline{c}}$ ، $\frac{2+\overline{c}}{\overline{c}}$
- $(\mathring{\mathbf{T}} \bullet -)$ اذا کان : جا $\boldsymbol{\theta}$ = جتا ۲٤٠ ظا ۱۳٥ جا ۱۵۰ + جتا (۳)

 $^{\circ}$ وجد : قيم heta حيث $^{\circ}$ < قيم heta

 \mathring{r} افا کان : جتا $\frac{q}{10} = \theta$ حیث \dot{r} کیا ($\dot{\epsilon}$) افا کان : جتا $\dot{\theta}$ القدار : جا \dot{r} جا ($\dot{\theta}$ + \dot{r} \dot{r} کیا فاوجد قیمة المقدار : جا (\dot{r} \dot{r} \dot{r} \dot{r}

(٥) مضلعان متشابحان النسبة بين محيطيها ١ : ٤ فإذا كانت مساحة المضلع الأكبر تساوي مكعب مساحة المضلع الأكبر تساوي مكعب مساحة المضلع الاصغر. فأوجد مساحة سطح كل منهما.