

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجى إشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداءات وتقييمات لمنهج الرياضيات للصف الأول الثانوي الفصل الفصل الدراسى الأول للعام الدراسي الأول للعام الدراسي ٢٠٢٦ / ٢٠٢٦

الأسبوع الخامس

لجنة الإعداد أ/ إيهاب فتحى أ/ عصام الجزار أ/ عبير نجاح

> مراجعة أ/ شريف البرهامي

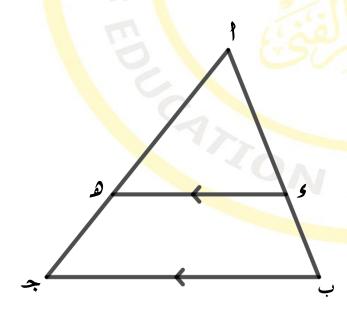
أ/ عفاف جاد

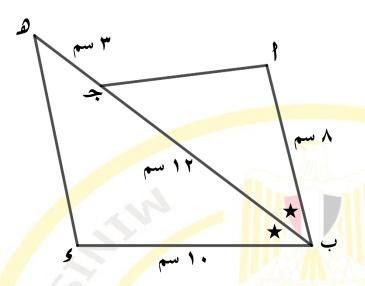
الأسبوع الخامس الأداء الصفي الرياضيات للصف الأول الثانوى

وجد قيمة ك التي تجعل جذرا المعادلة :
$$m^7 + 3$$
 $m + 2 = صفر حقيقين مختلفين (1)$

: متساویین فأوجد :
$$(7)$$
 إذا كان جذرا المعادلة : (7) (2) (2) (3) (4) أولا : قيمة ك الحقيقية والمعادلة

- (ξ) إذا كان θ قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة $oldsymbol{ heta}$ في النقطة ($rac{oldsymbol{\xi}}{oldsymbol{\alpha}}$ ، جا $oldsymbol{ heta}$ ، ظا
- (\circ) أوجد جميع الدوال المثلثية لزاوية قياسها heta المرسومة في الوضع القياسي وضلعها النهائي يقطع دائرة \circ
 - (7) إذا كان $oldsymbol{ heta}$ قياس زاوية موجهة في الوضع القياسي وضلعها النهائي يقطع دائرة الوحدة $oldsymbol{ heta}$ ا الله عدد في النقطة 1 فأوجد جميع الدوال المثلثية لهذه الزاوية في الحالات الأتية :


(٧) عين إشارة كل من النسب المثلثية الأتية:


$$m{ heta}$$
 فا $m{ heta}$ أوجد : جتا $m{ heta}$ ، خا $m{ heta}$ أوجد : جتا $m{ heta}$ ، ظا $m{ heta}$) أذا كانت : $m{ heta}$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

$$m{ heta}$$
 فا $m{ heta}$ هنا $m{ heta}$ ه

$$m{ heta}$$
 بجتا $m{ heta}$ ، جتا $m{ heta}$. ختا $m{ heta}$ فياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

افي الشكل المقابل:
ب ه ينصف ∠ الب و
مـ (△ البج) = ٤٨ سمالم
أوجد: مساحة سطح (△ و ب ه)

(۱۳) مثلثان متشابحان النسبة بين ضلعين متناظرين فيهما ۲ : ٥ فإذا كانت مساحة سطح المثلث الأصغر تساوي ۲۰ سم فأوجد مساحة سطح المثلث الأكبر

(۱ ٤) مثلثان متشابحان النسبة بين محيطيهما ۱ : ٤ فإذا كان مجموع مساحتي سطحيهما يساوي ۲۰۶ سم^۲ فأوجد مساحة سطح كل منهما.

(10) مثلثان متشابحان النسبة بين مساحتي سطحيهما ٤ : ٩ فإذا كان محيط المثلث الأصغر ٦٠ سم فأوجد محيط المثلث الأكبر.

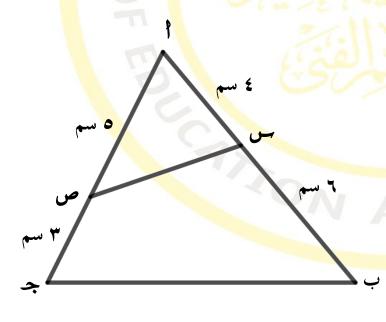
الرياضيات للصف الأول الثانوى الأداء المنزلى الأسبوع الخامس

مور حقیقین مختلفین
$$Y - Y + A = -A$$
 حقیقین مختلفین عتلفین التی تجعل جذرا المعادلة : $A = A$

(
$$\Upsilon$$
) إذا كان جذرا المعادلة : m^{Υ} – Υ (\mathfrak{C} + \mathfrak{T}) m + Υ \mathfrak{C} + \mathfrak{S} = صفر متساويين فأوجد : أولا : قيم \mathfrak{C} الحقيقية في في الحقيقية في الحقيقية في الحقيقية في الحديث المعادلة في الحديث الحديث المعادلة في الحديث ال

إذا كان
$$\theta$$
 قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة $\left(\frac{\xi}{0}, \frac{\xi}{0}\right)$ فأوجد : جتا θ ، جا θ ، ظا θ

(
$$\circ$$
) أوجد جميع الدوال المثلثية لزاوية قياسها θ مرسومة في الوضع القياسي و ضلعها النهائي يقطع دائرة $\frac{\sqrt{v}}{\sqrt{v}}$ ، $\frac{1-v}{\sqrt{v}}$)


في النقطة
$$\frac{1}{2}$$
 فأوجد جميع الدوال المثلثية لهذه الزاوية في الحالات الأتية : أولا : $\frac{1}{2}(m^2 - m^2)$ حيث $\frac{1}{2}(m^2 - m^2)$

$$m{ heta}$$
 فظ $m{ heta}$ أوجد : جا $m{ heta}$ ، ختا $m{ heta}$ = $-$ أوجد : جا $m{ heta}$ ، ظا $m{ heta}$) أذا كانت : $m{ heta}$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

$$m{ heta}$$
 و الجاكانت : ۱۸۰ $m{ heta}$ ، $m{ heta}$ ، $m{ heta}$ ، $m{ heta}$ ، ظا $m{ heta}$) الجاكانت : ۱۸۰ $m{ heta}$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

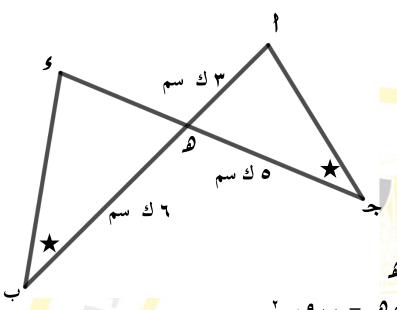
$$oldsymbol{ heta}$$
 وظا $oldsymbol{ heta}$ = صفر أوجد : جا $oldsymbol{ heta}$ ، جتا $oldsymbol{ heta}$ ($oldsymbol{ heta}$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

(١١) في الشكل المقابل :

اب جو مثلث ، س ∈ اب بحیث اس = ٤ سم

، سب = ٦ سم ، ص ∈ اج بحيث اص = ٥ سم

ص ج = ۳ <mark>سم</mark>


اولا: أثبت أن Δ البج \sim Δ المسس

انیا : إذا کان مساحة سطح Δ اسم $\Lambda = M$ سم

فأوجد مساحة سطح △ البج

ثالثا: أوجد مساحة سطح الشكل الرباعي سوبجص

اه = ۳ ك سم ، هب = ۲ ك سم

جـه = ٥ ك سم (ك > صفر)

ں (کے ج) = ق (کے ب)

أوجد <u>: أولا</u> : طول هـ ح

ثانيا: أوجد م<mark>سا</mark>حة سطح المثلث وبه

ا إذا كانت مساحة سطح 🛕 اجه ه = ۹۰۰ سم

ر ۱۳) البج مثلث ، و $\in \overline{| h |}$ بحیث | h | ب کو ، ه $\in \overline{| h |}$ ب بحیث و هم | h | ب بحد هماحة سطح المثلث | h | و ب بحد مساحة سطح شبه المنحرف و ب بحد هماحة سطح شبه المنحرف و ب بحد هماحة سطح شبه المنحرف و ب بحده المثلث المود المود المثلث المود المود المثلث المود المثلث المود المثلث المود المثلث المود المثلث المود المثلث المود المود

(١٤) إذا كانت النسبة بين مساحتي سطحي مثلثين متشابهين تساوي ١٦ : ٩٤

أولا: أوجد النسبة بين طولى ضلعين متناظرين فيهما .

ثانيا : أوج<mark>د النس</mark>بة بين محطيهما .

ثالثا: إذا كان مجموع محيطي المثلثين يساوي ٣٣ سم فأوجد محيط كل منهما.

(10) النسبة بين مساحتي سطحي مثلثين متشابحين هي ٣: ٥ فإذا كان الفرق بين مساحتي سطحيهما ٢٤ سم في المثلثين .

الرياضيات للصف الأول الثانوى التقييمات الأسبوعية الأسبوع الخامس ⊙

المجموعة الأولى

اثبت أن جذري المعادلة : $۲س^7 + 7 س - ٥ = صفر حقیقیان مختلفان (۱)$

$$heta$$
 فا $heta$ ، جا $heta$ ، خا $heta$ أوجد : جتا $heta$ ، خا $heta$ ، خا $heta$ إذا كان : $heta$ فتا $heta$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

في النقطة (θ) هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة (θ) ، θ هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة (θ) ، θ هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة (θ) ، θ هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في الوضع القياس (θ) ، θ

(٥) أبجو شكل رباعي فيه بج = ٢٧ سم ، أب = ١٢ سم ، أو = ٨ سم ، وجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أج ، أوجد النسبة بين مساحتي سطحي المثلثين ب أوجد المثل

المجموعة الثانية $\frac{1}{1}$ اثبت أن جذري المعادلة : $7m^7 + 7m - 1 = 0$ صفر حقيقيان مختلفان

$$heta$$
ن الخاكان : ۷ ظتا $heta$ = $heta$ حيث $heta$ $> heta$ حيث $heta$ أوجد : جتا $heta$ ، ظا $heta$ ($heta$) أذا كان : ۷ ظتا $heta$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

و ضلعها النهائي يقطع دائرة الوحدة θ هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة (θ ، جا θ ، حا θ ، خا θ في النقطة (θ ، جا θ ، حا θ ، خا θ

ر کے) إذا کان کے المبید
$$\Delta \sim \Delta$$
 س ص ع $\Delta = \frac{1}{m} = \frac{1}{m}$ ، مساحة سطح المثلث البج = ۲۷ سم فأوجد مساحة سطح المثلث س ص ع

(٥) ابجو شكل رباعي فيه بج = ١٣,٥ سم ، اب = ٦ سم ، الو = ٤ سم ، الو = ٤ سم ، المجو شكل رباعي فيه بج = ١٣,٥ سم ، المجاه النسبة بين مساحتي سطحي المثلثين ب المجاه الوجد النسبة بين مساحتي سطحي المثلثان بالمجاه الوجد ا

المجموعة الثالثة $\frac{1}{2}$ اثبت أن جذري المعادلة : $m^2 + m - V = صفر حقيقيان مختلفان (1)$

$$heta$$
نظ وضعها القياسي في دائرة الوحدة) $heta$ وحد $heta$ قياس زاوية موجهة في وضعها القياسي في دائرة الوحدة)

لا) إذا كان
$$oldsymbol{ heta}$$
 هو قياس زاوية موجهة في الوضع القياسي و ضلعها النهائي يقطع دائرة الوحدة في النقطة ($oldsymbol{rac{\pi}{V}}$ ، $oldsymbol{ heta}$ ، $oldsymbol{ heta}$

آبج
$$= \frac{1}{4}$$
 مساحة سطح المثلث البج $= \frac{1}{4}$ مساحة سطح المثلث البج $= 1$ سم $= \frac{1}{4}$ مساحة سطح المثلث س ص ع