

وزارة التربية والتعليم و التعليم الفنى الإدارة المركزية للتعليم العام إدارة تنمية مادة الرياضيات

برعاية معالي وزير التربية والتعليم و التعليم الفنى السيد الأستاذ/ محمد عبد اللطيف

وتوجيهات رئيس الإدارة المركزية للتعليم العام د/ هالة عبد السلام خفاجى إشراف علمي مستشار الرياضيات مستشار الرياضيات أ/ منال عزقول

أداعات وتقييمات لمنهج الرياضيات للصف الأول الثانوي الفصل الفصل الدراسى الأول للعام الدراسي ٢٠٢٦ / ٢٠٢٦

الأسبوع الحادي عشر

لجنة الإعداد أ/ إيهاب فتحى

أ/ عصام الجزار

أ/ عفاف جاد

مراجعة أ/ شريف البرهامي

🕦 الرياضيات للصف الأول الثانوى الأداء الصفى الأسبوع الحادى عشر

(۱) مثل بیانیا الدالة د : د (س) = س
7
 – 8 س 4 + 7 ثم عین إشارة الدالة د فی ع

مثل بیانیا الدالة د : د (س) = _ س
$$+$$
 عین إشارة الدالة د في ع) مثل بیانیا الدالة د فی ع با مثل بیانیا الدالة د الدالة د الدالة د فی ع با مثل بیانیا الدالة د ال

(
$$\mathbf{r}$$
) مثل بیانیا الدالة \mathbf{c} : \mathbf{c} (\mathbf{m}) = \mathbf{m}^{r} + \mathbf{r} \mathbf{m} + \mathbf{s} ثم عین إشارة الدالة \mathbf{c} في \mathbf{g}

(٤) ارسم منحني الدالة
$$c : c (m) = m' - 3 في الفترة [$m' m' = m' + 3$ و من الرسم عين إشارة الدالة $c = m' + 3$$$

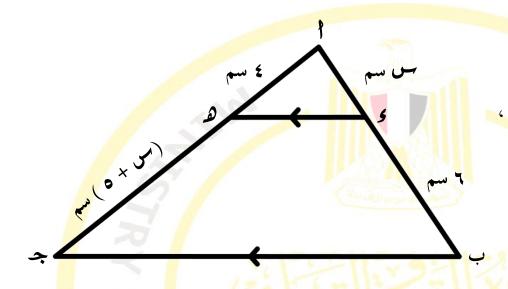
: يا التي تحقق كلا مما يأتي $oldsymbol{ heta}$ فاوجد قيم $oldsymbol{ heta}$ التي تحقق كلا مما يأتي :

$$(\cdot, \Upsilon \Upsilon \circ \Upsilon) = \boldsymbol{\theta}$$
ا جا

$$(oldsymbol{\cdot}, \mathbf{7} \mathbf{\xi} \mathbf{7} oldsymbol{\cdot}) = oldsymbol{ heta}$$
 جتا $oldsymbol{ heta}$

$$(7,1507-)=\theta \Leftrightarrow (\Rightarrow)$$

(٦) سلم طوله ٥ أمتار يستند على جدار فإذا كان ارتفاع السلم عن سطح الأرض يساوي ٣ أمتار فأوجد بالراديان قياس زاوية ميل السلم على الأفقي

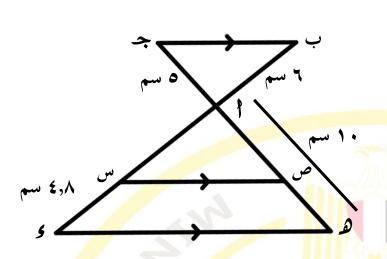

$$\mathring{}$$
 ۱۸۰> θ > $\mathring{}$ حیث $\mathring{}$ و خاکان : جا

احسب قياس الزاوية $oldsymbol{ heta}$ الأقرب ثانية $oldsymbol{ heta}$

$$oldsymbol{ heta}$$
 ، قا $oldsymbol{ heta}$ ، قا $oldsymbol{ heta}$ ، قا $oldsymbol{ heta}$

(
$$\Lambda$$
) أوجد بالقياس الستيني قياس أصغر زاوية موجبة تحقق كلا من :

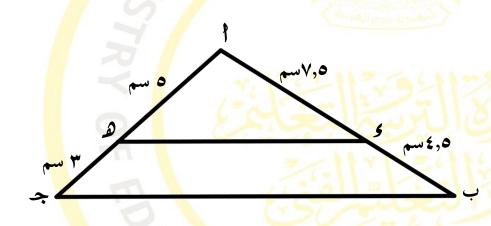
(٩) في الشكل المقابل : إبج مثلث ، و ∈ إب ،


أو<mark>جد</mark> : قيمة س ال<mark>عد</mark>دية

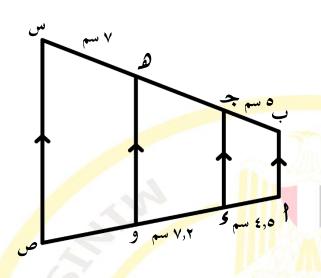
أوجد: طول بج

(١١) في الشكل المقابل:

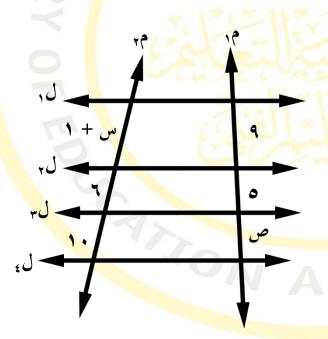
(١٢) ف<mark>ي ال</mark>شكل المقابل :


اب<mark>ج</mark> مثلث ، و ∈ الب

ه 🗲 اجر ، وب = ه,٤ سم


ا ا و و ۷٫۵ سم ، اه و ۵ سم

، هج = ۳ سم


أثبت أن: وه // بج

الشكل المقابل : الموب // وج // وه // ص س ، الموب // وج // وه // ص س ، الموب عنه المقابل : الموب عنه المقابل المن : جه الموب عنه الموب الموب

(١٥ <mark>) في</mark> الشكل المقا<mark>بل</mark> :

ل, // ل, // ل, ال الم // ل، ، م, ، م, قاطعان لهما بإستخدام الأبعاد الموضحة في الشكل أوجد: قيمة كل من س، ص العددية (علماً بأن الأطوال مقدره بالسنتيمترات)

الأداء المنزلي للصف الأول الثانوي

(۱) مثل بیانیا الدالة د : د (س) =
$$m^7 - m + 7$$
 ثم عین إشارة الدالة د في ح

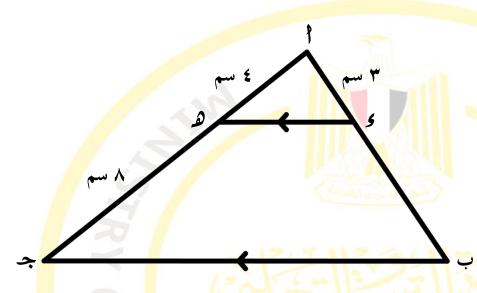
مثل بیانیا الدالة د : د (س) =
$$-3$$
 س -7 س -9 ثم عین إشارة الدالة د في ح

(٤) ارسم منحنی الدالة د : د (س) =
$$m^7 - 9$$
 في الفترة [m^7 ، ٤] و من الرسم عين إشارة الدالة د في m^7

: يَانَ يَحْقَقَ كَلا مِمَا يَأْتِي
$$oldsymbol{ heta}$$
 فأوجد قيم $oldsymbol{ heta}$ التي تحقق كلا مما يأتي :

$$\cdot, 77$$
 جتا $\theta = 0$

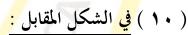
$$(7,7710 -) = \theta$$


(ج) قتا
$$oldsymbol{ heta} = oldsymbol{(heta, 1, 1, 7, 1)}$$

ه) يهبط كريم بسيارته لأسفل منحدر طوله ٦٥ متر ، و ارتفاعه ٨ أمتار ، فإذا كان المنحدر يصنع
$$oldsymbol{ heta}$$
 بالتقدير الستيني مع الأفقي زاوية قياسها $oldsymbol{ heta}$ أوجد $oldsymbol{ heta}$ بالتقدير الستيني

$$oldsymbol{ heta}$$
 ب قا $oldsymbol{ heta}$ ، قا $oldsymbol{ heta}$ ، قا $oldsymbol{ heta}$

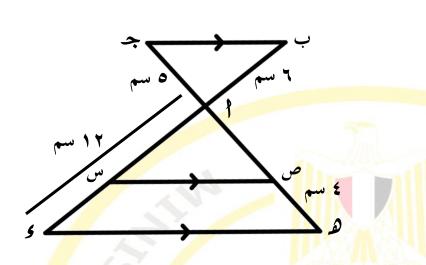
(
$$\Lambda$$
) أوجد بالقياس الستيني أصغر زاوية موجبة تحقق كلا من :


(٩) في الشكل المقابل:

اب ج مثلث ، و ∈ اب

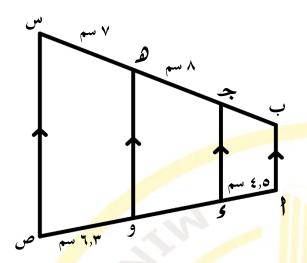
ه ∈ اج بحيث: وه // بج

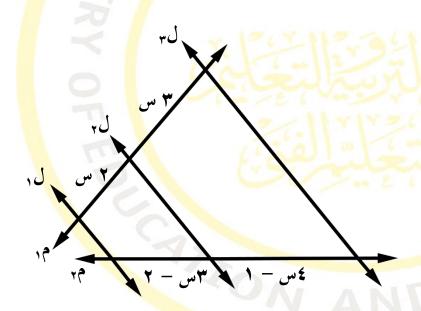
، هج = ۸ سم


أوج<mark>د : طول كوب</mark>

ب ھ= ۲ <mark>7 سم</mark>

أوجد : طول <u>ب ك</u>




7 mg

ر ۱۳) س ص ع مثلث فیه : س ص = ۱۶ سم ، س ع = ۲۱ سم ، ل \in س ص بحیث س ل = ۲٫۰ سم ، = ۰٫۸ سم = ۰٫۸ سم ، ثبت أن : = ۰٫۸ سم ، ثبت

$(\ 1 \ 2 \ 1 \) = \frac{1}{2} = \frac{1$

(10 <mark>) ف</mark>ي الشكل المقا<mark>بل</mark> :

ل, // ل, // ل, مم قاطعان لهما باستخدام الأبعاد الموضحة في الشكل أوجد: قيمة س العددية (علماً بأن الأطوال مقدره بالسنتيمترات)

🕥 الرياضيات للصف الأول الثانوي التقييمات الأسبوعية الأسبوع الحادى عشر 🛈

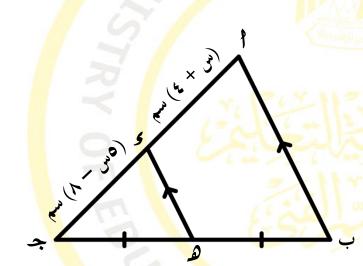
المجموعة الأولى:

ا ابحث إشارة الدلة د حيث د
$$(m) = Vm - m^7 - 1$$
 موضحاً ذلك على خط الإعداد الحقيقة

(
$$\Upsilon$$
) إذا كان ل ، م هما جذرا المعادلة : m^{Υ} = 0 m + Υ = 0 m + 0 m وأوجد المعادلة التربيعية التي جذراها : 0 + 0 m ، 0 + 0

$$oldsymbol{ heta}$$
ودا کان : ۲ جتا $oldsymbol{ heta}=-1$ حیث ۱۸۰ $oldsymbol{ heta}>$ فأوجد قیاس زاویة $oldsymbol{ heta}$

(٤) في ا<mark>لشك</mark>ل المقابل:


اب ج مثلث ، ه منتصف بج ،

و ∈ اج بحيث هو // با

است<mark>خد</mark>م الأبعاد المو<mark>ض</mark>حة في ال<mark>شكل</mark>

لأيج<mark>اد قيمة: س العد</mark>دية

(<mark>علم</mark>ا بأن الأطوال <mark>مقد</mark>رة بالسنتيمترا<mark>ت)</mark>

m 2 may 9

(0) في الشكل المقابل : $| \sqrt{1 + \sqrt{2}} | \sqrt{1 + \sqrt{2}} |$ $| \sqrt{1 + \sqrt{2}} | \sqrt{1 + \sqrt{2}} |$ $| \sqrt{1 + \sqrt{$

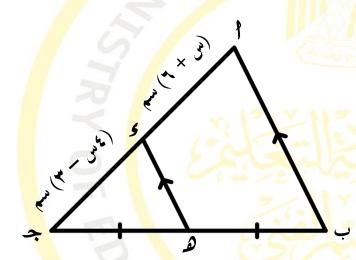
المجموعة الثانية:

ابحث إشارة الدلة د حيث د
$$(m) = \Lambda m - m^7 - 10$$
 موضحا ذلك على خط الإعداد الحقيقة (1)

(
$$\Upsilon$$
) إذا كان ل ، م هما جذرا المعادلة : m^Υ _ 0 m + Γ = 0 m + Γ فأوجد المعادلة التربيعية التي جذراها : 0 + 0 ، 0 0 0 0 0

$$oldsymbol{ heta}$$
وجد قیاس زاویة $oldsymbol{ heta}$ افاکان : ۲ جتا $oldsymbol{ heta}$ حیث $oldsymbol{ heta}$ ، $oldsymbol{ heta}$

(٤) في الشكل المقابل:


اب ج مثلث ، ه منتص<mark>ف بج</mark> ،

و ∈ <mark>ا</mark> بحیث هو // با

است<mark>خ</mark>دم الأبعاد المو<mark>ض</mark>حة في الشكل

لأي<mark>جاد</mark> قيمة : س الع<mark>دد</mark>ية

(<mark>علم</mark>ا بأن الأطوال <mark>مق</mark>درة بالسنتيمترات)

$$(0)$$
 في الشكل المقابل : $\sqrt{1 + \sqrt{2}} = \sqrt{1 + \sqrt{2}}$ $\sqrt{1 + \sqrt{2}}$ $\sqrt{2}$ $\sqrt{$

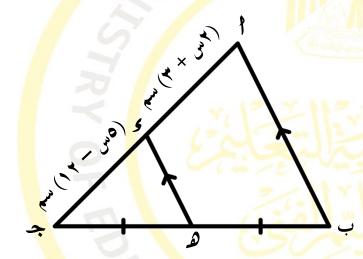
المجموعة الثالثة:

ا بكث إشارة الدلة
$$c = c = c$$
 $c = c = c$ الإعداد الحقيقة $c = c = c$ الإعداد الحقيقة الإعداد الحقيقة الإعداد الحقيقة

(
$$\Upsilon$$
) إذا كان ل ، م هما جذرا المعادلة : m^{Υ} – 0 m + Γ = 0 m + 0 m فأوجد المعادلة التربيعية التي جذراها : 0 + 0 m ، 0 + 0

$$oldsymbol{ heta}$$
و الحاكان: $oldsymbol{ heta}$ جتا $oldsymbol{ heta}$ حيث $oldsymbol{ heta}$ و الحاكان: $oldsymbol{ heta}$ جتا $oldsymbol{ heta}$ عيث $oldsymbol{ heta}$

(٤) في الشكل المقابل:


اب ج مثلث ، ه منتصف بج ،

و ∈ اجر بحيث هو<mark>ر / با آ</mark>

است<mark>خد</mark>م الأبعاد الموض<mark>ح</mark>ة في ال<mark>شكل</mark>

لأي<mark>جاد</mark> قيمة : س الع<mark>دد</mark>ية

(<mark>علم</mark>ا بأن الأطوال <mark>مقد</mark>رة بالسنتيمترا<mark>ت)</mark>

أوجد طول كل من : <u>و ا ، وص</u>